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INTRODUCTION

One of the greatest advances in physics in the last century was to give answers to cer-
tain questions which had often been asked befcre, such as '"How big are atoms?", 'What are
the properties of ordinary matter, such as compressibility and surface tension?"'. All of
these quantities had previously beer neasured, but now we kncw wiy they have their observed
values. We can say the same, with somewhat less assurance, about ruclear structure and
about astronomical questicns such as the stars (the life, the size, znd the temperature of
stars), and to an even lesser extent, or practically not at all, about the branch of physics
we are dealing with here at CERN, namely the question of the elementary particles. This is
why this account will contain very little about elementary particles; simply because from
the point of view of understanding what is really going on, we unfortunately know very little.
But there is a purpose in what we are about to do, because in looking at the structure of
the rest of physics we build up an idea of what to expect for the physics of elementary
particles, and we can see just how far we are from this ideal situation. In fact, as far
as explaining the cbservable properties of elementary particles, the situaticn tcday is
about the same as it was in the case of the atoms before the turn of the century.

Physics -- atomic physics, ruclear physics, molecular physics, solid-state physics --
is a very complicated thing. The essential idea of this account is to go back to the nain
fundamental ideas which I feel have somehow been lost in the wealth of complicated theocry
and mathematics. Therefore I shall be very qualitative. We shall only calculate order of
magnitude answers tc all the questicns that we shall ask. Whenever there is an equal sign,
it will not mean '"'equal', only ''the same order of magnitude as'. Factcrs such as 2, w, etc.,
will be neglected. What a wonderful life, but only from the philosophical. point of view.

In the daily work of the physicist, constants are, of course, important. However, I would
like you to consider this account as a form of "higher entertainment.

We shall start with a very simple question: "How big is an atcm?'. In the nineteenth
century, pecple knew quite well that atoms existed. They even knew Low tc count them, and
knew roughly their size (from the number in a known volume cf a solid or a liquid where they
are tightly packed). This size was, however, only a mumber ancd the most fundamental pro-
gress of quantum theory was that it revealed the size of the atoms in terms of fundamental
magnitudes, such as the electronic charge e, tne mass of the electron my and tlie quantum of
acticn (Planck's constant) h.

Let us calculate, in a very simple way which many cf you will kncw, the size and the
energy of the hydrogen atom, and lock at the essential physical principles anc constants
invelved.

1. ATOMIC AND MOLECULAR PHYSICS
1.1 The hydrogen atom

We shall now derive the size and the energy of
the H-atom. This consists of two particles, a pro-

ton and an electron, bound together by an attractive r
Coulomb force. /
5+

SIS/kw/msc/sm
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The electron, circling arcund the proton, has a potential energy V = -e2/r and a kine-
tic energy K = pz/Zme. Here Tt is the average distance from the proton, and p is the mo-
nentum of the electron. But we kncw frcm cuantum mecharics that p = hi/x, where % is the
De Eroglie wavelength of the electrcn. In a bound state this wavelength is nct well de-
fined. In a quantum state without nodes, which is of the size r, we can write x v v
(because a Schrédinger wave pattern of size r consists mestly, if one makes a Fourier
anzlysis, of waves of wavelength A which are of the same size as this wave pattern, if
it is a simple one). From this we cerive that

hz
K = p . (l-l)
2mer
Therefore the total energy is
2 2
e h
E=-—+ >
r 2m.r
or
A, B,
E= - — —? >
T 2r

with A, =e®> and By = ﬁ"’/me.

The electron tries to keep a compromise between the electrostatic attraction (which
pulls it towards the proton) and the quantum kinetic energy [Eq. (1.1)], which would be
low if r is large. The compromise is reached when the total energy is kept to a minimum.
The corresponding radius is found by setting

dE|_
dr a, S
which leads to
B, H’
a°=—=—2-=0.53.l.
Ay, mee
One gets thus
_ Af _ mee" . =
Eo_-z_Bo_- 0 ~-136eV =—-1Ry . .2)

we call a, tie Bohr radius and Ry the Rycberg.

Now let us look at the first excited state, i.e. thet wave functicn which has a node.
It is clear that the wavelength will not be equal tc r, as it was befcre, but to r/2, so
that the kinetic energy K and the constant B will be fcur times bigger:

K1=4Ko
B1=4Bo.

7his means that the binding energy will be four times smaller and the radius four times

larger:

1
E =5 E=-025Ry ; 1 =da .
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This is then the origin of the Ealmer spectriT. of the hycrogen atom. If an orbit is n wave-
lengths long, the energy will be (1/n?)E, and the radius n2ay, so that tke enrergy released
by & transition frem the excited state tc the ground state is (1 - 1/n2)E,.

1.2 The helium atom

Corsider twc electrcns in the ground state
circling arcund the mnucleus. Their combined
potential energy in the field cf the nucleus is

r
1 Pephn
' 8P and their kinetic energy is
r
\
o 12
e
N T=2 2 ?
o 2m,r

. so that we have

2 2
E=-4—+2 S -
r 2mer

From this we can cerive as before the ndnimum energy and radius:

42
E=—2-E°=—8Ry. T =

; a, = 05 ap

NN

However, this is not quite true, because we did not take intc account the repulsicn between
the electrons. This lowers the binding erergy. We assume thet on the average the electrons
are at a distance T e apart, with r eff somewhere between r and the full diameter 2r. Let
us werk with a ratio Togg 0T < 1¢ : 6, or Tegf = r/0.6. Then the repulsive pctential is

+ e S
Teff Tor
anc¢ the tetal energy is
e’ 2
E=—r-(—4+o.6)+2 - .
2m.r
Now A must be replacec by 3.4 A and we get
(347
E = E = S8Ry ; r=2a, =06a, -

This energy is almost exactly the binding energy of the two electrons in helium, thus justi-
fying our assumption for Tofgt

1.3 The neon atom

Here we have twe K-shell (n = 1) and eight L-shell (n = 2) electrons surrounding a ru-
cleus of charge Zz = 1C.
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The K-orbit radius is very small because it goes as 1/A and A is propertional to the
charge -- here 10 -- so that it will be rcughly 1/10 tc the hydrogen radius. So we are
going to assume an effective Z, Z off = 8 and only eight electrons, all in the L shell, which
has states with one node.

The attractive petential cf all L-electrons in the field of the nucleus is -(8e)?*/r.
To calculate the repulsive potertcial, we shall consider, as in the helium atom, that Toer =
r/0.6 per pair. We now count the total mumber of pairs:
N(N - l] 8 x7 56

= 28

2 2 2z
and get a tctal energy (for 21l eight electrons):

2

e2 2
E= —|—(8 + 28 x0.6]| + 8 x4
Zr[() :I 2mer2

Therefore:
A=47 Ay , B = 32 Bo
and, as in Eq. (1-2)’

477
8(><)4 E, = - 69 Ry ; r=8)<4

E =

In general, for a given Zoggs the total energy and radius of the outer shell is giver by

2 2
ZegelZegr — 1)
[Zeffz - === x06 Zess | Zegr — 0-3(Zegs — 1)

2
E = =
Zeff nz Il2
and
2
Zegs N n’
T (z 1) B ’
Zess\Zegs —
Zegs” — — %06 Zegr - (Zege = 1) x 0.3

The following table compares our calculations with actual measurements [the energies were
* Y -
taken from Landolt, the radii from Shankland )J-

The gereral agreement between measured and calculated values justifies our appreach.
We can now urcerstand the folleowing:
1) The ztomic radii increase with n®? and decrease with Z, so that there is a jump for
every new shell (Li, Na, etc.); generally the radii will be of the order of C.5

to a few Bohr radii;

*) Landolt-BSrnstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue
Serie, Gesamtherausgabe K.H. Hellwege, Gruppe I, Band 1: Energie—Niveaus der Kerne

(Springer Verlag, Berlin, 1961).
R.S. Shankland, Atomic and Nuclear Physics (Macmillan, New York, 1955).
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2

2) The birding energy of cne electrcn in the outer shell increases rcughly as Z off and

decreases as n?, the largest values corresperding to clesed shells.

ctement |2 | 2| = rfa,] | E[Ry] | r{a0] | E[Ry]
eff
Calculeted Meesured
H T T 1 e 10 | 1.0 | 10
He 2] 20 1] o€ ! 5.8 | 0.6 | 5.8
Li 51 1| 2| 4.0 | o0.25| 2.8 | 0.4
Be 5| 2] 2] 24 14 | 22 | 2.0
B s1 3] 2] 1.7 | 43 | 1.6 | s.2
c 6| 41 2] 1.3 @ 9.6 | 1.2 |10.9
N 71 s| 2] 1.1 i18.0 | 1.0 |18.5
0 8| 6| 2| 0.9 i3.5 | 0.6 |31.8
F o | 7| 2| 0.8 {42.0 | 0.7 |48.5
Ne |16 8| 2] 0.7 :69.0 | 0.6 |70.0

1.4 Binding energies of solids

In order tc understand some aspects cf solid-state physics, whick will be cCiscussed
later, we want to derive as an example the binding erergies and distances cf icnic crystals.
As an example, we can take Na+F_, the lattice of which looks like that shown in Fig. 1:

+ -+ ==+ -+ -
- = = =+ = +

Fig. 1

where at the + places there is a Na* an¢ at the - places a F . These attract each other
by & Coulonb force. In fact, if the ions were pcints, the lowest energy weculd be reached
if the vhole lattice ccllapsed. But they have radii -- the core radii R -- an¢ the nearest
they can ccnie is when the ccres touch (because cof the Pauli principle, which prevents elec-
trons frem taking the sane place, or ctherwise of having the same cuantum rurbers, there-
fore preventirg the cores from interperetratirg each other). So there will be a distance
tetweer. the ions, which we shall call a.

Let us now celculate the binding energy of this +- structure. To do this, cne must
add uwp the Couionb fields of zll surrournding ions in a series, with alternetive sign temms,
which ccriverges. The result is

E. = —0.87 €*/a per ion .
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Now if the atoms were exact spheres, then the energy necessary to take them apart at
zerc temperature would obvicusly be this Coulcmb energy. But cof course this is not quite
tree. If we plot EC = f(a), we notice that as a gets smaller Ec goes down, and when a
reaches the value r; + T, (the sum of tke two radii) then the potentizl gces up raridly.
So what we should use as a binding energy is this minimum and not the Coulomb potential at
taat point, but if the curve is steep there is no big difference (see Fig. 2):

Ec

Fig. 2~

To get the distance a, one should not add up the two average radii of Na' and F~ but
the actual ones, which will always be bigger. This can be understood by comparing the
radius R and the average radius Rav of a sphere of homogeneous charge distribution. By
definition

R
of rp dV

Wl

Ray R .

R
[ pav
0

Thus introducing a fudge factor f we have d = £(r; + T2) = 2f ao, where 1 < £ < 4. The
potential energy per atom in this solid is then:

e? 0.87 €2

=S o TRy

E = -0.87 —
d 2f  a,

and the binding energy BS ® ng Ry, with ng = 0.2, ..., 0.8. We therefore find that the
order of magnitude of binding energies in solids is several volts.

This By is the energy we have to spend when we want to take an isolated atom of
temperature T = 0 away from the lattice. Of course if we are at room temperatures
(T = 300°K) we will need less energy.
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In liquids (and by liquids we mean those things that are liquids at room temperature,
e.g. water, alcohol), obviously the binding must be less: g = 0.05-0.2.

For those substances that are gases at room temperature, n is very small. For the
rare gases He, Ne, A, Kr, Xe, Rn, where there is practically no binding between the atoms
because of their closed electron shells, n is almost zero.

1.5 Lattice vibrations

Now let us take a crystal. If it is heated it should vibrate, and the vibration energy
per atom should be 3 kT. This follows from the equipartition of energy, which says that each
degree of freedom corresponds to an energy of ; kT. But here we have six degrees of free-
dom (three positions and three momenta), so 3 kT in all. Let us now consider only one-
dimensional displacements. Then we should use kT instead of 3 kT. We would like to find the
amplitude of these vibrations.

If the energy € = B, the particles would separate; this means the amplitude of vibra-
tion will be, roughly speaking, equal to

b=a/2.

Now let us calculate the amplitude of vibration when € < B. The amplitudes of an oscil-
lator are proportional to the square root of the energy, therefore

b_i\/E_i/EZ
2 VB 2 B °

If we use B = 5 oV and T = 300°, then KT = 1/40 eV and the amplitude is

_2
A 2

So we see that the vibration amplitudes at room temperature are small compared to the lat-
tice distance.

1.6 Evaporation temperature of solids

One can take a handbook of constants, look up a lot of numbers such as binding ener-
gies, elasticity coefficients, melting temperatures, and so on, and then ask oneself:
"Why are they that big and not a 100 times smaller or bigger?' This is the question we are
now going to ask ourselves regarding evaporation temperatures of solids. These are usual-
1y of the order of 3,000 degrees. Let us now calculate them.

We would have been naive if we had said that to get each atom loose we would have to
give it an energy kT equal to its binding energy. If that were so and we used a binding
energy of 5 eV, we would get melting temperatures of more than 50,000 degrees, whereas
they should be less (1 eV = 10,000°).

Now let us see how one should tackle the problem. The evaporation temperature depends
on the pressure of the gas surrounding tie solid. We assume that this pressure is one at-
mosphere. We shall consider a solid lattice of atoms A and above it a gas of the same
atoms. We define the evaporation temperature as that temperature at waich the number of
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particles escaping from the surface is equal to the number of particles coming down from
the gas. As a rough approximation, we consider the solid as a very dense gas held to-
gether within the volume of the solid. The probability that one atom escapes is, accord-
ing to the Boltzmann statistics, e'B/ KTey times the probability that it comes to the sur-
face. The probability for coming down from the gas to the solid is roughly equal to the
probability that a gas atom reaches the surface. Since the density of the gas is 1000
times smaller than the density in the solid (we consider the solid as a gas of high pressure),
the chance of reaching the surface is 1000 times smaller from the gas to the solid than
from the solid to the gas. Since only a fraction e-B/ kTey of those which reach the surface
from the solid will enter the gas, but every one that reaches the surface from the gas will
stick to the solid, the number coming down and the number escaping will be equal if

oB/KTev 1.
1000
i.e. B/KT., = log 1000 = 7
or kT., = B/7 .

With B ~ 3 eV, we get T ~ 4000°, which is a little high but of the right order of magnitude.
1.7 Heights of the mountains in terms of fundamental constants

Of course there are high mountains and low mountains. But one may ask, why is the maxi-
mm height 10 ka (iMount Everest) and not fifty times as much? We see them down to zero
height because of erosion and fresh formation. But what is the significance of that order
of magnitude of 10 km = 10° acu? It is a consequence of the nature of the solid state of
rock. It is also comnected with the strength of gravity expressed by the gravitational
constant, and wit. the mumber of nucleons in the Earth, which is 3 x 10°!. Later on we will
show that this number is not purely accidental and must lie between certain limits.

Why do the mountains not grow infinitely high? If a mountain gets too high it sinks
into the earth beneath it because the material in this earth -- the granite, quartz, or
silicon dioxide -- is not strong enough to hold it. The force due to the weight of the
mountain is sufficient to break the directionality of the bonds between the atoms in the
rock, i.e. it is liquefied and can flow aside so that the mountain sinks. The energy neces-
sary for the liquefaction comes from the potential energy lost by the mountain when it sinks
into the ground.

Let the height of the mountain be h and let it sink by a distance x. Let the mass of
the mountain be M:

h lMg

.

1
-.J k— liquefied rock flows to side
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The solid line represents the initial position of the mountain and the dotted line its
final position.

Loss in gravitational potential energy = energy needed to liquefy a mass of rock
equal to the mass of a height x of the mountain, i.e.

Mg x = Ejjq x nxX ,

where
M = mass of the mountain
n = mumber of molecules per unit volume
X = cross-sectional area of the base of the mountain
Eliq = liquefaction energy (i.e. latent heat of melting) per molecule.

Cancelling x gives
Mg = Ejjq x nX . . 1.3)

The right-hand side of this equation has a definite value. Therefore “in order to produce
liquefaction, i.e. in order for the mountain to sink, M must have a certain minimum value.
If M is less than this critical value, the mountain is stable. Therefore the masses of
stable mountains are given by

Mg < Ejq nX . (1.4)

NowM=hX xn xm; m= mass of a molecule of rock = A mp, where A is the atomic number of
the molecule, i.e.

M=hXn A mp .
Substituting for M in Eq. (1.4) gives

hXn A mp g < Ejq nX ,

Ej;
< —3 (1.5)
A mp g
so that h must be less than the critical value Eliq/A mp g for the mountain not to sink into
the earth.

What is the liquefaction energy E1 iq? A liquid is, in fact, quite well bonded. When
a solid melts, the whole bonds between the atoms are not broken, just the directionality
of the bonds. This enables a liquid to flow, whereas a solid cannot because its bonds are
held in fixed positions relative to its constituent atoms. The energy necessary to break
the directionality of a bond, i.e. to liquefy, is evidently less than the binding energy.
It is difficult to estimate just how much less, because the theory of the liquid state is
not very well developed.

We simply take ice and water as an example, in which the heat of melting (80 Cal) is
about one-seventh of the heat of evaporation. Since the binding energy of ice at zero tem-
perature is somewhat larger than at boiling temperature, it would be a good estimate to
assume that the melting energy is about one-tenth of the binding energy. We write
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Eliq=BB=BnR)”

with 8 v 0.1 and n ~ 0.2 for silicon oxide. Substituting for Eliq in Eq. (1.5) gives

BB’
Ampg

h <

BnR
or ny

(1.6)

IA

A mp g
For silicon dioxide Si0,, A = 28 + 2(16) = 60 and

h < Bn x 3 x 10° cm
1

—xlxleo"
5

10

IA

< 3 km ,

where n = 1/5-has been assumed for the solid rock at its melting point.

This shows that a mountain must be less than 30 km high to be supported by the rock
at its base. Actually the upper limit is smaller than that because the rock is warm and
therefore needs less energy to liquefy. All the mountains we find on Earth are of a height
which is of this order or smaller. On other planets the critical height would be different
because the acceleration due to gravity g would be different, and the planet may also be
made of a different type of material.

Let us eliminate g from this expression because it is not a fundamental constant.
This can be done as follows. The force of attraction between a particle of mass m and the

Earth mass ME is

Gm ME
mg = > ’
Rg
where RE is the radius of the Earth, i.e.
GM
g=— . (1.7)
RY

‘1E and RE can be expressed in temms of NE’ the number of nucleons in the Earth -- if we do
not look too closely. The Earth consists mostly of silicon dioxide Si0, (A = 60) in the
crust, and iron (A = 57) in the core. These two substances have approximately the same
atomic rumber and, therefore, size. Their radius can be expressed as fa,, where fn 4, so
that

Ne

4 4 Ng /3
volume of the Earth = 3 RE = 3" A (fa,)) and Rg = fa, |— .

Substituting in Eq. (1.7), we get

GME GNE mp
g e
Re R¢
A Y/ 1
= GNg mp x [—] x . (1.8)
Ne (£a,)*
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G, the gravitational constant, has dimensions. We would like to work with dimensionless
quantities. The potential between two electrons -- OT any two particles of charge |e|, e.g.
the proton -- due to Coulomb attraction is e?/r where r is their separation. The potential
between two nucleons due to gravitational attraction is G'rbz/r. It can be seen that Gu'&)2
and e? play the same role in these expressions. This analogy can be used in defining a
fine structure constant of gravity oj = Gmpz/hc (cf. fine structure constant a = e?/hc);

o and og are dimensionless constants; og = 0.59 x 10'33, which is much smaller than the
electromagnetic o = 1/137, which indicates how weak gravity is.

As an example of how strong the electromagnetic force is, compared with the gravita-
tional force, consider the Apollo rocket which, as we know, is rather big:

~hundred metres

B o

If all the electrons were removed from 1 cubic mm of iron in the centre of the rocket at A
and placed on the ground below it at B, the force of attraction between these electrons and
the residual positive charge at A about a hundred metres away would be sufficient to prevent
the rocket from ever leaving the ground, i.e. it is of the same order as the weight of the
whole rocket. This example is due to Yuval Ne'eman of Tel-Aviv. :

If G is written in terms of o in Eq. (1.8), we obtain an expression for g in terms of
fundamental constants:

ag hc 1
g = s Az/s NEl/s

(fao]z -.

Substituting g in Eq. (1.6) gives

2 1 1
ag Ngx/s As/a

b

h 2

— = X

a, gnf
which is an expression for h/a, in terms of dimensionless constants. Only N is not a
universal constant.

This, of course, gives the same value for h as before with £ = 4.

1.8 Number of atoms in a liquid from its
surface tension and latent heat of evaporation

Consider a liquid at room temperature. It can be represented in two dimensions by
the diagram below

< surface of liquid
< body of liquid
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ach atom in the body of the liquid is bound to its neighbours by six bonds (in the
th:  dimensional case). Therefore the binding energy per atom B = 6b, where b is the
strength of a single bond. However, the atoms on the surface have only five bonds pro-
ducing a resultant force puiling these atoms towards the body of the liquid, which gives
the 'skin effect' of surface tension. ' These atoms therefore have an energy b = B/6 less
than other atoms in the liquid. Since b is negative, this results in a positive surface
energy. The surface tension S is defined as the surface energy per unit area of surface,
which can also be expressed as an atomic energy per atomic area:

S = surface energy per atom
area corresponding to 1 atom

_b
- dz

-0 B,
6£2 al

where d is the separation between the nuclei of the atoms.

This formula is very well fulfilled -- within 50%; the error is due mainly to the as-
sumption b = B/6 and depends on the structure of the liquid.

The heat of evaporation per atom is B. Therefore the heat of evaporation per cc

E = heat of evaporation per atom
ev volume per atom

2
ds °
Eliminating B from these two equations we have

S

Eev

|
ol
[« %

|
|-
X
z |-
-

where N is the mumber of atoms along an edge of length 1 am. Rearranging, we get

1 Eev
N =— . 1-9
5 S (1.9)

Therefore simply by measuring the surface tension and latent heat of evaporation per umit
volume, it is possible to determine the number of atoms in a line 1 am long. This number
cubed gives the mumber of atoms per cc in the liquid.

The following is a very simple derivation of the same formula. Take 1 cc of water.
We would like to count the mumber of atoms in it. How shall we do this? We take a very
sharp knife and cut it into slices one atom thick, i.e. N slices. We repeat this in the
other two dimensions. This leaves separated atoms. It is equivalent to the liquid having
evaporated. The energy used to separate the atoms in both cases must be the same. Each
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cut bares 2 square amn of surface and therefore costs 2S in energy. N = 1/d cuts are made
in each of three dimensions, therefore the total energy used in cutting up 1 cc of water is
2S x N x 3 = 65N .
This must equal the latent heat of evaporation per cc, E ev? i.e.
Eey = 6SN ,

1 Eey
N =-— .
6 S

This is exactly the same relation [Eq. (1.9)] as obtained by the first method.

This is a wonderful way of counting atoms -- wonderful because the number of atoms is
terrific, yet it is reduced to two measurable human experiences. We know how much energy
it takes to boil away 1 cc of water -- we do it every day. We also have a feeling for
how much energy it needs to extend a surface, for example in blowing a soap bubble. Yet
together they give us a mumber so great that we cannot really visualize it.

This should be in every elementary physics textbook, but it can only be found in one
little-known book which is otherwise very bad. Written by a (fortunately) completely
unknown German physical chemist and entitled 'German Chemistry', it came out at the
height of the Nazi régime in Germany in 1938. It contained a lot of chapters that were
strongly against quantum mechanics (this being a Western, Jewish invention) and insisted
that chemistry should be very much simpler -- and that German chemistry was, quoting this
as an example. It shows that one can find pearls wherever one looks for them.

1.9 The Pauli Exclusion Principle
The Pauli Exclusion Principle is usually stated in one of the following ways:

1) It is impossible to have more than one fermion in the same quantum state. For
example, it is possible to have two electrons with the same spacial wave function,
but one of them must be spin-up, the other one spin-down.

2) The wave functions must be antisymmetric under interchange of the two fermions.

Both these definitions can be very useful; but it would also be very useful to intro-
duce another one which states that particles that obey the Pauli Exclusion Principle, i.e.

fermions, must stay apart from each other. We shall show this using the second definition
above.

Let us take two electrons of the same spin so that they are really equivalent. Let
their position and momentum be x;,k; and Xx,,k,, respectively (for the one-dimensional
case). The wave function of the system must be the product of the wave functions of the
individual electrons, i.e.

Y = eikl)q eikzXZ

= eik(xx-xz)

= e1kx ,
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where k; = -k, = k is the momentum of each electron in the centre-of-mass frame, and where
X = X; - X2 is the separation of the two electrons. This equation is non-symmetrized. The
correct wave-function must be antisymmetric under interchange of the two electrons, in
agreement with the Exclusion Principle, and it is written:

ikx -ikx

yp =e - € ’

where e-ikx is obtained from ej'kx by interchange of the labels 1 and 2 of the electrons.
This may be written

v = 2i sin kx .

The probability density |¢|® = -4 sin® kx. The graph of |v|? against x is shown below (see
Fig. 3), i.e. the probability of finding the electrons a certain distance apart as a function
of this distance:

1§12

Fig. 3~

Let there be a spread in the momentum values of the electrons such that
2/3 ko < k < 4/3 ko with a definite average value ko. [y|? would be an integral of all
these waves of different k, such as the one shown above with wavelengths slightly shorter
or slightly longer than that of the average corresponding to ko. This gives a curve as
shown below:
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Here the solid line represents the resultant and the dotted line is a curve such as in
Fig. 3 for the single wave average momentum K. This shows that the probability of find-
ing the two electrons a given distance apart is roughly constant at large separations;
but as the separation drops to zero, so does the probability. The distance in which this
change takes place is approximately the distance in which sin kx goes from 1 to 0, i.e.
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in a distance of the order of 0 < x < 1/ko, probably a little smaller. This tells us
therefore that two identical fermions must stay apart. Their minimm possible separation
is of the order of their average wavelength * = 1/k, corresponding to their momentum

Po = hko.

This is a very interesting idea and can be considered to be what is left in quantum
theory of the old idea that electrons, protons, and neutrons are hard, impenetrable
spheres. This classical idea is of course wrong, but fermions do behave as if they had a
certain radius. This radius depends on their momentum and therefore on their energy. The
higher the momentum, the smaller is this radius where they effectively become impenetrable.

Let us apply this to an electron gas. Consider N electrons in a volume V, all with
parallel spins so that they are identical. Then there is a minirum average energy that
these electrons must have. The standard quantum mechanical way of solving this problem is
to put the electrons in eigenstates associated with this box of volume V. Each eigen-
state can accommodate only one electron. This is called the Fermi gas. The lowest state
of the Fermi gas is when the lowest eigenstates are occupied, so that the average energy
can be calculated. This is simple enough. But we shall do the calculation another way,
which gives the same formula except for the constant which must be obtained from the
exact quantum mechanical treatment.

Associated with each electron is a space of volume of the order (4/ 3)7=(2/2)%, where
x is related to its momentum through p = hk = h/x. The volume occupied by all the electrons
is

4 - (xY :
venzTlo) (1.10)

where X is the maximm possible average value of X for the given values of Nand V. But

d

4 3
V-_—_Nx_ -— .
3"(2]’ .11

where d is the mean separation of the electrons, so that

x~d,
j.e. in a Fermi gas the average wavelength of the fermions is of the same order as their
mean separation.

For randomly oriented spins, there will be N/2 spin-up and N/2 spin-down particles.
Each of these groups may be considered separately since there is no Pauli effect
between electrons of opposite spin because they are no longer in the same quantum state,
so that Eq. (1.10) becomes

But still

4 (d)
V=N><§Tr[—] , (1.11)
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so that
X ~a
32 ’
l.€.
4kz3‘/-2_d or Sz—l—*‘].
X 3/2

We can also use this idea to calculate the average kinetic energy of an electron in

a Fermi gas:

R

Zmed2

1.10 Black-body radiation

Black-body radiation of temperature T is associated with a certain volume V at tem-
perature T containing electromagnetic radiation. It has a definite radiation density,
i.e. a definite energy per unit volume, which is given by the Stefan Boltzmamn law

2
LA S
Epaq/cm’ = e (kT)* .

This formula can be derived by considering the radiation as being composed of a gas
of photons with an average energy of KT. Each photon can be considered as occupying a
cube of side x, where x = c/w, i.e. they occupy a volume = x3. The energy of each photon
is hw, where w is chosen such that hw = KT. The energy density is therefore

s _ energy per photon
volume per photon

Brad cm™

R
|

which is just the Stefan Boltzmann law.

*) The result obtained from an exact quantum mechanical treatment for random spin orienta-
tion is
d

rl 2.34 .

*%) The exact figure from quantum mechanics is

K, = 55 ——
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NUCLEAR FORCES

Because of its relevance to the study of the stars and their internal mechanisms, we
shall say a few words about nuclear physics. So far we have considered only atomic pro-
cesées. Now it is very simple and instructive to go over from atomic processes to nuclear
processes by the following observation. The hydrogen atom is a system of two particles
attracted by a Coulomb force. Now the deuteron consists also of two particles, a proton
and a neutron, bound together by a different kind of force, namely the nuclear force. Un-
fortunately it is far more complicated than the Coulomb force, and in fact we do not really
understand it. Figure 4 shows a plot of the nuclear potential of the deuteron as a function
of the radius r:

|
v
O L J A
1t 2f r
-50MeV +
Fig. 4

The r scale is calibrated in fermis, where 1 fermi = 10 '® cmn. The precise form of V(r)
depends on whether the spins of the nucleons are parallel or antiparallel and whether
their relative quantum state is symmetric or antisymmetric, but broadly speaking it has
three main features:

i) it is repulsive at small distances, up to about 1 fermi;
ii) it is attractive for distances over about 1 fermi;
iii) it has a finite range of about 2 fermis.

Now if you know some chemistry you will notice that V(r) resembles the chemical po-
tential between two atoms in a molecule, which is also repulsive at small distances and
attractive at large distances. This may be significant. The chemical force is not after
all a fundamental force but rather a very complicated left-over from the Coulomb attrac-
tions between the constituents of the atoms. It could well be, then, that the nuclear
force is also a derived kind of effect such as a left-over force from interactions between
more fundamental particles -- perhaps the quarks, if they exist. At present, of course,
much experimental work is being done to determine the origin of the nuclear force. One
recalls that the discoveries of Rutherford and Bohr as to atomic structure gave a basis
from which to derive the complicated chemical forces. We have not yet reached that stage
in regard to the nucleon structure, and this is why we do not know the basis of the nuclear
force.
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Comparing the nuclear force with the Coulomb force reveals two fundamental differences
uamely that it is repulsive at short distances and has a finite range. However, to get a
rough Guantitative comparison between the two forces we can say that in the effective at-
tractive region of the nuclear force it is about ten times as strong as the Coulomb attrac-
tion. In other words, in that region the nuclear potential goes roughly as g?/r, where
g " 3.3 e. Let us therefore use this to get a rough order of magnitude idea of the radius
and the binding energy of the deuteron. Earlier we derived the corresponding formulae for
the hydrogen atom, namely:

a, = h*/me’ and E, = —m.e*/n* .
Wie replace e by g and m s by "‘p’ the proton mass, and immediately obtain for the deuteron:
ap = h*/myg* ~ 2,/20,000 ,
which is of the order of a few fermis,
and . Ep = —mpg*/h® ~ 200,000 Eo

wihich is around a few million electron volts.

Of course one has to be a little careful because of the differences between the two
systems. The fact that the deuteron exists only in the ground state (L = 0) (apart
from the 5% admixture of L = 2 from the fact that the system is not quite spherically sym-
metric) is a consequence of the short-range nature of the force. Suppose, for example,
the deuteron existed in the state L = 1. Then by analogy with the hydrogen atom it would
have a radius of 4 aps and this is outside the range of the nuclear force. Consequently
the proton and neutron would fly apart.

This situation is characteristic of the difference between the nuclear and Coulomb
forces. However, we shall use the values a, and ED to give a rough measure of nuclear
systems until the day, perhaps in twenty years time, when we shall have a coherent theory
at our disposal.

*)
THE STARS
3.1 Introduction

We sihall now give an estimate of the size of the stars and shall discuss thelr manner
of evolution. We snall see that some basic constants, some characteristic magnitudes that
we have already shown to be fundamental in atomic, molecular, and nuclear phenomena, will
enter into our discussion. To simplify the discussion we shall assume that a star has
constant density. This of course is false, the density increasing towards the interior,
but we shall talk in terms of an average density and an average radius. It turns out that
these errors are smaller than they would appear, because a star's density decreases rather
rapidly in its outer layers, and consequently we get answers of the correct orders of mag-
nitude. Of course strictly speaking this is an unscientific approach, but for the sake
of clarity it is fun and at the same time instructive to talk in this way after the astro-
physicists have solved the complicated differential equations.

*) The following considerations were inspired by reading E. Salpeter's article in
Bethe Festschrift: "Perspectives in Modern Physics", edited by R. Marshak, 1966.
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3.2 The Virial Theorem -- Forces at work in stars

We first derive for stars the well-known Virial Theorem, which relates the internal
kinetic energy to the gravitational potential energy. We shall assume that a star consists
partly of hydrogen at high temperature, or in other words free protons and electrons, and
partly of radiation, i.e. photons, and shall ignore a 1% to 2% contribution from other
nuclei.

Two opposing forces keep a star in equilibrium. First there is gravity, which tends
to contract the star, and secondly there is the pressure P that resists this contraction.
This pressure arises from the kinetic energy of the constituent particles, rather like
molecules in a gas.

Now for a star of constant density the gravitational potential takes the fomm
Q = -AGM%/R, where R and M are the radius and mass of the star, G is the gravitational con-
stant, and A some numerical factor of the order umity. If we increase the radius by a

small amount dR and hence the volume by dV, the increase in energy U of the star will be
given by

du=-Pdv + dQ .

If the star is in stable equilibrium its energy will be minimal, and consequently
we must have dU = 0. Using V o R® gives:

= =3PV dR/R + AGM?/R? 4R ,

and so we obtain

3PV = \@Q2/R=-Q .

Next let us consider the form of the pressure P.
For particles in a perfect gas P = ¥; n pv, where n
is the density of particles and pv is the mean value
of the product momentum times velocity for each. To
_____ v_ see this we need only remark that a particle of mo-
mentum p striking a wall normal to its path and suf-
fering elastic reflection transmits to the wall a mo-
mentum 2p. If there are n such particles per cubic
frmm e - centimetre, then the number striking 1 am® of wall
per second will be nv. The contribution to the total
pressure by these particles will then be 2n pv. When we add up over all particles we get a
factor Y%, since only one-sixth of particles with speed v will strike the wall (there are

Tcm?

six directions in space). For non-relativistic particles we can use p = mv to get

1 2

P=gmnv ==€ ,

(SN

where € is the mean kinetic energy density (i.e. per unit volume).
On the other hand, for relativistic particles v ~ ¢, and so we nrust use p = E/c and

this gives

-1 =
P—snE € .

(B
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This last relation is of course exact for photons. For once, the factor 2 which differen-
tiates our two expressions for P is significant.

Writing Ve = K, the internal kinetic energy of the star, we get 2K = -0 for non-
relativistic particles and K + -Q for highly relativistic particles. So the total energy
U= K+ Q is given by U = 1@ for non-relativistic particles and U » 0 for highly relati-
vistic particles. The difference, as we have said, is significant. In the first case U
is negative since Q is, and so it follows that the star is stable. In the second case U
is zero, or strictly speaking small and negative, so that no energy or rather little energy
is needed to take the star apart. Consequently, highly relativistic stars are unstable.
The reason for this physically is that the radiation pressure within a star is far more
effective than the particle pressure in overcoming the gravitational forces.

3.3 Cool stars

3.3.1 GSize and temperature

Let us first consider cool stars; in other words, stars for which the radiation pres-
sure is small compared with the non-relativistic particle pressure. So we consider only
protons and electrons, and let there be N of each. If the temperature of the star is T
then the mean kinetic energy per particle is % kT, where k is Boltzmann's constant.

So the total kinetic emergy of the star K = 3NKT, i.e.

X GM*/R .

N

1
NKT = — = @ =
2

Dropping numerical factors of the order unity a.nd‘dividing by N, we then get for the energy
per particle

kT ~ GM*/NR .

Now let d be the average distance between neighbouring protons so that Nd® ~ R3.
Further, putting M = N(mp + me) N Nmp (neglecting the electron mass compared with the pro-
ton mass), we obtain

KT ~ Gm? N**/d .

{/ith the "fine structure constant" for gravity defined before by oG = Gn'f)/ hc and a
number No defined as No = (1/0) % we get

KT ~ (N/N.*? he/d . (3.1)

We shall see that N, turns out to be about the number of protons in the Sun:

3.3.2 Evolution of a cool star

Let us first, however, use our result (3.1) to describe the evolution of a star.
Initially when the star is being formed from a contracting cloud of hydrogen, d is very
large and so T is very small. As the star contracts, d becomes smaller and T becomes lar-
ger. Furthermore, from the result U = Q2 v - 2/R we know that the total energy of the
star decreases as it contracts. In fact, as it contracts it gets hotter and hotter and
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consequently radiates energy. So we have a system which is losing energy and yet whose
temperature is actually increasing!

Of course this is a consequence of the Virial Theorem which tells us that the star
loses more in potential energy than it gains in internal kinetic energy. A similar ef-
fect can be seen in the case of the motion of the Moon around the Earth. Suppose that we
tried to reduce the speed of the Moor by hitting it with a large rocket in the opposite
direction to its motion. After the drastic blow its energy would be decreased and it would
start to fall towards the Earth. Eventually it would take up an orbit nearer to the Earth,
and in that case its orbital velocity would actually be greater than before. So if you try
to brake the Moon's speed it goes faster.

3.3.3 Electrons want space; Pauli supports them

Now we have our star contracting, getting hotter and radiating, but the process of
this collapse does not continue indefinitely. The limit is in fact given by the compres-
sibility of matter, which in turn is explained by the Pauli Principle. Recall that this
principle implied that the kinetic energy of electrons in some given volume must be at
least 1’12/med2 per electron, where d is their mean distance apart. (Since the number of
protons and electrons is the same, this d is the same as before.) The corresponding pres-
sure is called the degeneration pressure, and physically it arises from the cushioning ef-
fect of the electrons. The corresponding effect for protons can be neglected because I/mp
is very much smaller than 1/me.

Previously we neglected the degeneration pressure and wrote only P = Y;e, so that
PV = Y%K = NkT. We can modify this in a semiquantitative way by rewriting

Nh®
PV = NKkT + - .

med
Equation (3.1) then becomes:.
n’ N /3 hc
kT + >~ [—] —_ . (3.2)
med No d

3.3.4 Maximum temperature. Minimum size

Although the correct expression is more complicated than this, it has a reasonably
good asymptotic form for small and large d. The plot of -KT against d is shown in Fig. 5.
The shape of the curve is again typical of the form A/d%? - B/d, like the atomic energy
in Section 1.1.

It follows that the consequence of the degeneration pressure term is twofold:

i) The star has a maximm possible temperature depending upon its size and this is
4
given by kT = (N/No) 4 mecz.

ii) The star contracts to a minimum radius for which T = 0. Smaller radii would lead
to negative temperatures, which are not physically possible. It is then a mere
cold chunk of matter d . = n/mc (No/N)%. When going down from T . to T =0,
it radiates a lot within a very short time. During this stage, stars are called
"white dwarfs'. The valué of d for T max is in fact about dein‘
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-kT
Unphysical region
d min
=2 ;dmin
kTmox """""

. Fig. 5

3.3.5 The nuclear reactions and the qualified stars

And now, using the expression for T max® W€ shall derive the minimm allowed size of
a star. We require T max © be high enough for nuclear reactions to take place, otherwise
by definition we do not have a star. If the temperature is always too low, the system col-
lapses, becomes hotter, and then cools down (see Fig. 5), the whole process taking about a
nillion years, whereas a star in which nuclear reactions take place lives for more like a

billion.

Nuclear reactions take place if the energies involved are of the order of one-tenth
MeV and by pure chance the electron mass is of this order of magnitude, being around
0.5 MeV. So let us suppose that nuclear reactions will start at mean temperatures some-
what smaller than this limit, i.e. at fmecz, where £ is of the order of ¥, to Y%o. Then
we require that

KTpax > fmec®

. 3,
i.e. N/Ng > £% v Y,.

Now No is of the order of 10°7, which (to within a factor 2) is about the number of
protons in the Sun, and so our relation shows that the smallest stars have masses of around
one-tenth of that of the Sun. Indeed no smaller stars that really shine have ever been

observed.

System. below the limit Y10 No do not deserve the name of stars. Their history
is determined only by the opposite actions of pressure and gravity. The latter is not
strong enough to overcome the cushion effect of the electrons and to raise the temperature
to the critical value where nuclear reactions can take place, thus extending the lifetime
of the star. Such a system, after a highly radiative final stage (white dwarf stage) dies
into a cold chunk of matter. If N/N, is not too small, this final state will be highly
compressed. So let us ask what is the largest value of N for which such a cold object will
not be too compressed?
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3.3.6 When matter does not become a star

Now for matter with which we are familiar, the distance apart of neighbouring protons
is bigger than the Bohr radius. So let us demand:

_ a2 2
dpin > @ = h?/mc’ .

This tells us that
h/mec (No/NJ? > h¥/mc? .
In other words,
N/N, < (€2/hc)/? = o*2 ~ 1/1000 .
So for matter as we know it, in which atoms have electron orbits, we must have
N < No/1000 .

The mass of Jupiter is typical for this limit: so what we have really found is an
upper limit for the sizes of planets.

We can find a lower limit for the sizes of planets by demanding that the heights of
mountains are smaller than the radii! A planet must after all be reasonably round. It
therefore must be large enough in order that gravity is able to overcome the forces of rigi-
dity if it has an odd shape at the outset. From our previous discussion on the height of
mountains, one gets for the lower limit R* of the radius of a planet

8nfla
(R = ?;c— ag -

The minimm radius for a planet is around 500 kilometres. This figure is just the upper
limit for the radii of asteroids.

Let us briefly summarize. By stipulating, on the one hand, that matter should not be
too compressed, and on the other that the heights of mountains should not be too large, we
have found upper and lower limits for the sizes of planets. The Earth is just between
those two limits. Again by stipulating that nuclear reactions must take place, we have
found a lower 1limit for the sizes of stars.

3.4 Hot stars

We shall now derive the upper limit for the size of a star. Big stars become hot and
radiation can no longer be neglected. We recall from the Virial Theorem that a star con-
sisting mostly of radiation will be unstable, and it is this instability that will provide
the upper limit required.

3.4.1 The photons come in

We shall use Boltzmann's law which says that the energy density of photons at tempera-
ture T is about (KT)*/h%c3. Recalling that

2
p= —3— e for non-relativistic matter
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1
or 3 ¢ for photons,

we have PV = NKT + (kT)* V/n’c®, dropping numerical constants of the order unity. Equation
(3.1) modified by the radiation term then becomes

KT + (kT)* @*/n’c® ~ (N/N, ) hc/d , (3.3)
where we have used the fact that Nd® ~ V. Writing x = kT d/hc gives us the simple relation
x(1 + x%) ~ (/NS

The question we must now ask is: ‘'When will the radiation content dominate the matter
content?'; for this, after all, is our criterion for instability. The answer is: 'When
x% is large compared to 1", and this is true only if N/N, is large. In fact our condition
for instability is N/N, > 50, say, and this therefore gives the upper limit for the sizes
of stars.

Remembering that Ny ~ 10°7 we have shown that the number of protons in a star must
lie roughly in the region 10°° to 103°.

3.4.2 But electrons also are now relativistic

So far we have worked on the assumption that the protons“a.nd electrons in the star
were non-relativistic. For a cool star we had kTmax = (N/No) s mecz, and so for N/No ™ ¥,
say, the kinetic energies of the particles are small compared with their rest mass energies.
Our assumption was then correct. For hot stars, _however, with N/No > 1, thi§ is no longer
true. The electrons go faster and faster, and relativistic electron-positron pairs become
more and more abundant as the photon energy also becomes larger than mecz. Now the
degeneration pressure T‘iz/med2 was calculated on the basis that the wavelength of an
electron A ~ d (Pauli principle) and that its energy in the non-relativistic limit was
p2/2me, where p = i/A. In other words, for relativistic electrons we must replace l’iz/med2
by hc/d. Consequently, the cushion effect, which previously arose because of the 1/42
term, now disappears. Furthermore, in a hot star the term hc/d, which should have appeared
on the left-hand side of Eq. (3.3) is small compared with the right-hand side because
N/No > 1. This is why we neglected it.

So a hot star collapses and gets hotter, becoming more and more relativistic, and there
is no cushion effect to stop this collapse. Of course the process is held up by the nuclear
reactions which produce energy as fast as the star radiates it, but when the nuclear fuel
is exhausted the collapse continues (see Fig. 6):

-kT

Fig. 6
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3.4.3 Becoming neutrons

With increasing temperatures and decreasing interparticle distances, a new phenomenon
appears which we shall call the inverse neutron decay, although it is not just the inverted
reaction of the decay of the neutron. It is well known that free neutrons decay into pro-
tons, electrons, and antineutrinos according to

n+p+e +v

with an energy output of 0.8 MeV due to the mass difference between the mass of the neutron
and the masses of the proton and the electron together. The "inverse neutron decay" that
we refer to is the reaction

e +p-+n+v - 0.8MeV,
which becomes possible when electrons have kinetic energies of the order of 1 MeV or more.
The reaction is then even favoured as it absorbs part of the kinetic energy of the electrons.

We then have a neutron star. Initially the neutrons are non-relativistic because they
have a hlgher mass than the electrons, and consequently there is a small cushion effect.
Soon, however, T rises still further, the neutrons become relativistic, the star continues
collapsing, and there is no source of pressure that can stop this.

3.4.4 The pulsars and cosmic rays
Virtually two things can happen, one pleasant and the other unpleasant.
The pleasant thing

Stellar objects usually rotate, and the conservation of angular momentum during the
contraction process requires that the angular velocity should increase. Any initial
asymmetries in the shape of the star would be enhanced by this process. Sooner or later
the star would break up into fragments, and the chances are that for each one we would
have N < No. For each part our analysis for the cool stars would then apply, except that
the cushioning effect would be supplied by the neutrons. The radii of these fragments
would finally be very small -- around 10 km -- and their rotational periods, assulling a
period of around 25 days for the parent star ), would be of the order of milliseconds.
Any radiation emitted from such an asymmetric entity would cause it to flicker, and this
we believe is the origin of the pulsars. Furthermore, the magnetic field of such a star
would be pulled in and hence greatly magnified by the collapse, and this would enable
escaping particles to be accelerated up to incredible speeds. This, we believe, is the
origin of the cosmic rays.

3.4.5 Gravitation makes it black

The unpleasant thing

Suppose that the collapsing hot star never divides. Then there is no limit to the
collapse, but there is a limit to our knowledge of what actually happens if we are pre-
pared to watch only from afar. This limit is given by the Schwarzschild radius. If a star

*) This is about the period of the sun.
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collapses beyond the Schwarzschild radius terrible things happen, but fortunately we never
see them. So what you do not see you do not worry about.

‘Consider a photon of frequency w and energy hw leaving the surface of the stdr. Let
us calculate the radius of the star for which the gravitational field is so strong that
the photon never escapes but always falls back to the surface.

The potential energy of the photon at the surface is

and so its kinetic energy at infinity would be given by

GM h
I'wu'=l’1w-—-——-t£ .

Consequently, as soon as R = GM/c?, hw’ = 0, the photon never escapes and we never see what
happens. @/c? is called the Schwarzschild radius. Actually, General Rélativity predicts
a value precisely double this, but we are interested only in orders of magnitude. Notice,
in passing, that the gravitational potential energy of a particle of mass m at the
Schwarzschild radius is -GMm /R = -mc2, whereas its rest mass energy is mc?. So its total
energy is zero. So particle creation at the Schwarzschild radius would appear not to con-
tradict the conservation of energy! i

We have seen that the final collapse of a hot star is never seen by the outside
observer, although this is not true from the point of view of an observer collapsing in
with the star. We can put this another way by saying that the post-Schwarzschild collapse
takes place in the "more than infinite future" of the outside observer.

5.4.6 Where high-emergy physics could give a hand to astrophysics

We end with the following brief remarks. On Earth, atomic physics is important, the
temperatures being in the electron volt regions. In the centres of the stars, nuclear
physics is important because the temperatures there are in the million electron volts
region. We now ask: 'Where in the universe is high-energy physics at home in the sense
that it is the main process?' The answer lies in the fact that the only source available
for producing bulk energies is gravity. High-energy physics is characterized by the fact
that the excitation energies of the particles are of the same orders of magnitude as their
rest mass energies, i.e. of the order of 1 GeV. High-energy phenomena will occur when par-
ticles have kinetic energies comparable to their rest-masses. The Virial Theorem tells
us that the kinetic energies of particles are of the same orders of magnitude as their
gravitational potential energies, and we have just seen that these are equal to their mass
energies just at the Schwarzschild limit. (It follows that high-energy physics is import-
ant in a star just at that time when you cannot see it!)

The exciting possibility arises that high-energy phenomena in bulk are really closely
connected with gravitational phenomena, thus providing a tool for our investigation of the
extreme conditions in stellar evolution. There is the link of the infinitely small to the

infinitely big.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

