
Advanced Quantum Physics: Problem Set 3

1 Semiclassics

Section A: mostly bookwork.

A.1 Explain why the action for a particle in a simple harmonic oscillator, between times t = 0 and
t = T , is given by

S [x] =
1

2
m

ˆ T

0

dt′
(
ẋ2 − ω2x2

)
. (1)

[2 marks]

A.2 Show that classical trajectories obey

ẍ = −ω2x.

[5 marks]

A.3 Solve for the classical trajectory x (t) assuming x (t = 0) = 0 and x (t = T ) = X.

[3 marks]

Section B: bringing together ideas from across the course.

B.1 Explain the method of stationary phase.

[2 marks]

B.2 Find an expression for the normalisation Z−1 in terms of a Gaussian functional integral (which
you do not need to evaluate).

[3 marks]

B.3 Using the method of stationary phase and your answer to A.3, find an approximate expression
for the propagator of the harmonic oscillator. You do not need to evaluate the normalisation Z.

[5 marks]

Section C: more challenging.

Now consider the harmonic oscillator forced with a time-independent force F , for which the action is

S [x] =

ˆ T

0

(
1

2
mẋ2 − 1

2
mω2x2 − Fx

)
dt′. (2)

C.1 Show that the propagator is

Kforced (X,T ; 0, 0) = exp (iϵT/ℏ)K (X,T ; 0, 0)

where ϵ is an energy you should find.

[5 marks]
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Semiclassics (worked example solutions)

Section A: mostly bookwork.

A.1 Explain why the action for a particle in a simple harmonic oscillator, between times t = 0 and
t = T , is given by

S [x] =
1

2
m

ˆ T

0

dt′
(
ẋ2 − ω2x2

)
. (3)

[2 marks]

The action in general is

S =

ˆ T

0

dt′L (x, ẋ) =

ˆ T

0

dt′
(
1

2
mẋ2 − V (x)

)
(4)

(excluding magnetic fields, curved spaces, and so on, that we haven’t met yet and which are irrelevant
here).
[1 mark]
The harmonic oscillator potential is

V (x) =
1

2
mω2x2

[1 mark]
giving the desired result.

A.2 Show that classical trajectories obey

ẍ = −ω2x.

[5 marks]

Classical trajectories are those for which the action is stationary.
[1 mark]

S [x] =
1

2
m

ˆ T

0

dt′
(
ẋ2 − ω2x2

)
I will use functional derivatives, but any method is fine. Other choices are to explicitly vary the
trajectory x→ x+ λϵ, or to quote the general Euler Lagrange equation and insert the Lagrangian.

δS

δx (t)
=

1

2
m

ˆ T

0

dt′
(
2ẋ
δẋ (t′)

δx (t)
− 2ω2x

δx (t′)

δx (t)

)
[1 mark]
and integrate the ẋ term by parts:

δS

δx (t)
=

1

2
m

ˆ T

0

dt′
(
−2ẍ

δx (t′)

δx (t)
− 2ω2x

δx (t′)

δx (t)

)
(the boundary term vanishes by construction, as usual).
[1 mark]
Now use

δx (t′)

δx (t)
= δ (t− t′)
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to give

δS

δx (t)
= −m

ˆ T

0

dt′δ (t− t′)
(
ẍ+ ω2x

)
= −m

(
ẍ+ ω2x

)
[1 mark]
where the time variable in the last line is t (as opposed to t′ inside the integral). Set this to zero
[1 mark]
to find

ẍ = −ω2x.

A.3 Solve for the classical trajectory x (t) assuming x (t = 0) = 0 and x (t = T ) = X.

[3 marks]

The general solution to the equation in A.2 is

x (t) = A exp (iωt) +B exp (−iωt) .

[1 mark]
We require that

x (0) = 0

giving

x (t) = A sin (ωt)

[1 mark]
and

x (T ) = X

giving

x (t) = X
sin (ωt)

sin (ωT )
. (5)

[1 mark]

Section B: bringing together ideas from across the course.

B.1 Explain the method of stationary phase.

[2 marks]

The propagator is a functional integral over all possible trajectories, weighted by a phase exp (iS/ℏ).
[1 mark]
The method of stationary phase acknowledges that the biggest contribution to the integral comes from
those paths near the classical paths, for which the variation of S is zero.
[1 mark]

For a propagator

K (x, t;x0, t0) =

ˆ
Dx exp (iS [x] /ℏ) (6)
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the method of stationary phase gives

K (x, t;x0, t0) ≈ Z−1 exp (iS [xc] /ℏ)

where xc (t) is a classical trajectory.

B.2 Find an expression for the normalisation Z−1 in terms of a Gaussian functional integral (which
you do not need to evaluate).

[3 marks]

Expand the action around the classical trajectory using a Taylor series:

S [x] = S [xc] + (x− xc)
δS

δx

∣∣∣∣
x=xc

+
1

2
(x− xc)

2 δ
2S

δx2

∣∣∣∣
x=xc

+ ...

[1 mark]
and note that, by definition, the second term vanishes for classical trajectories, so

S [x] ≈ S [xc] +
1

2
(x− xc)

2 δ
2S

δx2

∣∣∣∣
x=xc

[1 mark]
therefore

K (X,T ; 0, 0) ≈ exp (iS [xc] /ℏ)
ˆ

Dx exp

(
i

2ℏ
(x− xc)

2 δ
2S

δx2

∣∣∣∣
x=xc

)
.

A change of variables will remove the xc term to give the simple Gaussian functional integral

K (X,T ; 0, 0) ≈ exp (iS [xc] /ℏ)
ˆ

Dx exp

(
i

2ℏ
x2

δ2S

δx2

∣∣∣∣
x=xc

)
.

The normalisation is therefore

Z−1 =

ˆ
Dx exp

(
i

2ℏ
x2

δ2S

δx2

∣∣∣∣
x=xc

)
.

[1 mark]

B.3 Using the method of stationary phase and your answer to A.3, find an approximate expression
for the propagator of the harmonic oscillator. You do not need to evaluate the normalisation Z.

[4 marks]

S [xc] =
1

2
m

ˆ T

0

dt′
(
ẋ2 − ω2x2

)
=

mω2X2

sin2 (ωT )

ˆ T

0

dt′ sin2 (ωt′)

=
mω2X2

sin2 (ωT )

ˆ T

0

dt′
1− cos (2ωt′)

2

=
1

2

mω2X2

sin2 (ωT )

[
T − sin (2ωT )

2ω

]
[4 marks]
So finally
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K (X,T ; 0, 0) = Z−1 exp

(
i

mω2X2

2ℏ sin2 (ωT )

[
T − sin (2ωT )

2ω

])
.

[1 mark]

Section C: more challenging.

Now consider the harmonic oscillator forced with a time-independent force F , for which the action is

S [x] =

ˆ T

0

(
1

2
mẋ2 − 1

2
mω2x2 − Fx

)
dt′. (7)

C.1 Show that the propagator is

Kforced (X,T ; 0, 0) = exp (iϵT/ℏ)K (X,T ; 0, 0)

where ϵ is an energy you should find.

[5 marks]

We can complete the square on the potential terms:
[1 mark]

Kforced (X,T ; 0, 0) =

ˆ
Dx exp

(
i

ˆ T

0

(
1

2
mẋ2 − 1

2
mω2

(
x2 − 2

mω2
Fx

))
dt′/ℏ

)

Kforced (X,T ; 0, 0) =

ˆ
Dx exp

(
i

ˆ T

0

(
1

2
mẋ2 − 1

2
mω2

(
x− 1

mω2
F

)2

+
1

2mω2
F 2

)
dt′/ℏ

)

[1 mark]
and the remaining F 2 term pulls out of the functional integral:

Kforced (X,T ; 0, 0) = exp

(
i

ˆ T

0

1

2mω2
F 2dt′/ℏ

) ˆ
Dx exp

(
i

ˆ T

0

(
1

2
mẋ2 − 1

2
mω2

(
x− 1

mω2
F

)2
)

dt′/ℏ

)

[1 mark].
Finally notice that we can change variables in the functional integral to

y (t) = x (t)− 1

mω2
F

ẏ (t) = ẋ (t)

giving

Kforced (X,T ; 0, 0) = exp

(
i

ˆ T

0

1

2mω2
F 2dt′/ℏ

)ˆ
Dy exp

(
i

ˆ T

0

(
1

2
mẏ2 − 1

2
mω2y2

)
dt′/ℏ

)

= exp

(
i

ˆ T

0

1

2mω2
F 2dt′/ℏ

)
K (X,T ; 0, 0)

5



[1 mark]
and finally the integral is trivial as F is constant:

Kforced (X,T ; 0, 0) = exp

(
i
F 2T

2mℏω2

)
K (X,T ; 0, 0)

giving

ϵ =
F 2

2mω2

[1 mark]
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2 Semiclassics
In this question we will apply the WKB approximation to the harmonic oscillator.

Section A: mostly bookwork.

A.1 Derive the WKB approximation

ψ (x) =
A+√
p (x)

exp

(
i

ˆ
p (x) dx/ℏ

)
− A−√

p (x)
exp

(
−i
ˆ
p (x)dx/ℏ

)
(8)

[7 marks]

A.2 The energy of the classical harmonic oscillator is

E =
p (x)

2

2m
+

1

2
mω2x2. (9)

Identify the two classical turning points x± of the harmonic oscillator potential.

[3 marks]

Section B: bringing together ideas from across the course.

B.1 The classical turning points of the harmonic oscillator are ‘soft’. Explain how this leads to the
Bohr Sommerfeld quantization condition

˛
pdx = 2πℏ

(
n+

1

2

)
. (10)

[2 marks]

B.2 Using the Bohr Sommerfeld quantization condition, find the WKB approximation for energy of
the quantum particle in the harmonic oscillator.

[6 marks]

B.3 Explain for which energies the WKB approximation to the wavefunction will be the most accurate.

[2 marks]

Section C: more challenging.

C.1 Explain with the aid of a diagram the possible trajectories undertaken by the quantum particle
through phase space (x, p), including the areas enclosed.

[5 marks]
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Answers to Q2
In this question we will apply the WKB approximation to the harmonic oscillator.

Section A: mostly bookwork.

A.1 Derive the WKB approximation

ψ (x) =
A+√
p (x)

exp

(
i

ˆ
p (x) dx/ℏ

)
− A−√

p (x)
exp

(
−i
ˆ
p (x)dx/ℏ

)
(11)

[7 marks]

This is straight from the notes, so I will not write out the solution. But you should work through it
at least once!

The energy of the classical harmonic oscillator is

E =
p (x)

2

2m
+

1

2
mω2x2. (12)

A.2 Identify the two classical turning points x± of the harmonic oscillator potential.

[3 marks]

The classical turning points occur when E = V (x) = 1
2mω

2x2.
[1 mark]
Therefore

x± = ±
√

2E

mω2

[2 marks]

Section B: bringing together ideas from across the course.

B.1 The classical turning points of the harmonic oscillator are ‘soft’. Explain how this leads to the
Bohr Sommerfeld quantization condition

˛
pdx = 2πℏ

(
n+

1

2

)
. (13)

[2 marks]

For soft turning points, we need to add a π/2 phase shift for each classical turning point in the cycle.
I don’t have a good analogy for this; it comes from Morse theory, and is called the Maslov index. It is
complicated, and its consideration led to a major result in algebraic geometry / string theory (Witten’s
conjecture). But it’s worth remembering. Hard boundaries give a π phase shift, which matches that
of a classical wave reflected at a hard boundary; whether there is a deeper connection I’m not sure!
[1 mark] for something sensible.
In any case, the soft turning points lead to the extra factor of 1/2, as there are two soft boundaries
per cycle.
[1 mark]

B.2 Using the Bohr Sommerfeld quantization condition, find the WKB approximation for energy of
the quantum particle in the harmonic oscillator.
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[6 marks]

p (x) =
√

2mE −m2ω2x2

[1 mark]
where the + sign is chosen by convention. In the Bohr Sommerfeld condition, the integral is twice the
distance between the classical turning points.
[1 mark]
Therefore

˛
p (x) dx = 2

ˆ x+

x−

√
2mE −m2ω2x2dx

= 2
√
2mE

ˆ x+

x−

√
1− mω2

2E
x2dx

now change variables using

sin (θ) =

√
mω2

2E
x

cos (θ) dθ =

√
mω2

2E
dx

[1 mark]
and the integration limits are now

x± = ±
√

2E

mω2

↓
sin (θ) = ±1

θ = ±π/2

[1 mark]

˛
p (x) dx = 2

√
2mE

√
2E

mω2

ˆ π/2

−π/2

cos2 (θ)dθ

=
2E

ω

ˆ π/2

−π/2

(1 + cos (2θ)) dθ

=
2E

ω
π

[1 mark]
Therefore

2E

ω
π = 2πℏ

(
n+

1

2

)
and

En = ℏω
(
n+

1

2

)
.

[1 mark]

B.3 Explain for which energies the WKB approximation to the wavefunction will be the most accurate.
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[2 marks]

The WKB approximation is semi-classical, and the correspondence principle states that quantum
mechanics approaches classical mechanics in the limit of large quantum number. Hence, it is most
accurate for large energies. Any statement to a similar effect receives full marks.

Section C: more challenging.

C.1 Explain with the aid of a diagram the possible trajectories undertaken by the quantum particle
through phase space (x, p), including the areas enclosed.

[5 marks]

ℏω
(
n+

1

2

)
=
p (x)

2

2m
+

1

2
mω2x2

This set of equations describes concentric ellipses centred on (p, x) = 0.
[1 mark]
It will be easiest to plot using scaled axes:

n+
1

2
= p′2 + x′2

p′ = p/
√
2mℏω

x′ = x

√
mω

2ℏ

in which case the classical trajectories are simply concentric circles of radius
√
n+ 1

2 .
[1 mark]
The Bohr Sommerfeld condition tells us that the area enclosed in (x, p) by ellipse nmust be (n+ 1/2) ℏω,
or area π

(
n+ 1

2

)
in (x′, p′) which happens to be equal to the full quantum solution for the harmonic

oscillator.
[1 mark]
Finally,
[2 marks]
For a decent picture summarising the above. Rescaling is not important provided the general shapes
are correct, or axis intercepts are clearly labelled.

10



3 Semiclassics (assorted questions not in exam style)

3.1 Airy function
Show that the Airy function, defined by

Ai (x) =
1

π

ˆ ∞

0

dt cos
(
t3

3
+ xt

)
(14)

solves the Airy equation

y′′ − xy = 0. (15)
Hint : find y′′ by differentiating under the integral. Then subtract xy from the result, and notice the
the resulting integral can be done by inspection. You need the fact that

sin

(
t3

3
+ xt

)∣∣∣∣
t→∞

= 0. (16)

NB this approach is a little imprecise; the fully correct way employs contour integration.

[4 marks]

3.2 Gaussian integrals and the action
The simple harmonic oscillator (as usual) turns out to be exactly solvable at the propagator level. In
this question we will see the solution in full detail, which will also clarify various bits I glossed over in
lectures.

3.2.1 Euclidean action

In the lectures we saw how to do functional Gaussian integrals of the form:

ˆ
Dx exp

(
−1

2

ˆ t

0

x (t′) Âx (t′) dt′
)

=

√√√√ (2π)
∞

det
(
Â
) . (17)

Show that the usual harmonic oscillator action

iS [x] = i

ˆ (
1

2
mẋ2 − 1

2
mω2x2

)
dt (18)

transforms to the Euclidean action

−SE [x] =

ˆ (
1

2
mẋ2 +

1

2
mω2x2

)
dτ (19)

under Wick rotation t→ −iτ .
[3 marks]

3.2.2 Gaussian form

Using integration by parts, show that
ˆ

Dx exp (−SE [x] /ℏ) =
ˆ

Dx exp
(
−1

2

ˆ
x (τ) Âx (τ) dτ/ℏ

)
(20)

with

Â = m

(
∂2

∂τ2
− ω2

)
. (21)

[3 marks]
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3.2.3 Wick rotate back

By Wick rotating back, show that the real-time propagator for the simple harmonic oscillator is

KSHO (x = 0, t;x = 0, t = 0) ≜
ˆ

Dx exp
(
i

ˆ t

0

x (t′) Âx (t′) dt′/ℏ
)

(22)

=

√√√√ (2πi)
∞

det
(
Â
) (23)

with

Â = −m
2

(
∂2

∂t′2
+ ω2

)
. (24)

[2 marks]

(NB The Wick rotation is needed to get convergent integrals along the way, but the result is the same
as if we’d ignored the divergence).

3.2.4 Calculating the pre-factor: the determinant.

We’ll generally neglect the mysterious pre-factor of the Gaussian functional integral. But let’s calculate
it once, here, in this exactly solvable case. See Altland and Simons, Condensed Matter Field Theory,
for more details. We require

det
(
Â
)
= det

(
−m

2

(
∂2

∂t′2
+ ω2

))
. (25)

The trick is to recall that the determinant of an operator is just the product of its eigenvalues. These
are found by solving

−m
2

(
∂2

∂t′2
+ ω2

)
xn (t

′) = ϵnxn (t
′) (26)

subject to the boundary conditions

xn (t) = xn (0) = 0. (27)

Show that

xn (t
′) = sin

(
nπt′

t

)
(28)

are such eigenfunctions, with

ϵn =
m

2

((nπ
t

)2
− ω2

)
(29)

the corresponding eigenvalues.

[4 marks]

3.2.5 Almost there...

Hence show that

KSHO (x = 0, t;x = 0, t = 0) = (2πi)
∞

∞∏
n=1

(
m

2

((nπ
t

)2
− ω2

))−1/2

.

[2 marks]
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3.2.6 Cancelling the infinity

The trick to dealing with the horrendous infinity out the front is to only deal with quantities that have
it cancel. Note that when the potential V → 0, KSHO = Kfree, we should obtain the propagator for
the free particle:

Kfree (0, t; 0, 0) =

√
m

2πiℏt
. (30)

Hence show that

KSHO (0, t; 0, 0) =

√
m

2πiℏt
∏
n

(
1−

(
ωt

nπ

)2
)−1/2

.

[4 marks]

3.2.7 Final answer...

Use the fact that

∞∏
n=1

(
1−

( x

nπ

)2)−1

=
1

sinc (x)
(31)

To find the propagator for the SHO.

[2 marks]

KSHO =

√
mω

2πiℏ sin (ωt)
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