Advanced Quantum Physics: Problem Set 2

1 Path Integral Quantum Mechanics

Section A: mostly bookwork.

A.1 The time evolution operator U (t — to) is defined by
¥ (1) = U (¢ — to) [¢ (to))- (1)
Show that for probability to be conserved, U must be unitary.

[4 marks]

A.2 A particle is initially at position xg at time tg. Explain why the amplitude to find the particle at
position z at time T is given by the propagator

K(.%‘,T;(E(),to) . (2)

[6 marks]

Section B: bringing together ideas from across the course.

B.1 A particle starts at position z = 0 at time ¢t = 0. At time ¢’ it travels through a slit of width 2b
centred about z = 0 before reaching a screen at time 7. Explain with the aid of a diagram why the
amplitude to find the particle at position z on the screen is given by

b
(2, T) = /713 do'K (2, T;2',t') K (2/,1';0,0). (3)

[4 marks]

B.2 The propagator in free space is given by

. (x5 — i)
R (antint) =\ g g ( ity —t) )

Show that the amplitude to find the particle in B.1 at position x at time 7T is given by

1 2m
T/J(ﬂf,T):% < 2hT) \/ hT/a(w dy exp (iy?)

for a suitably defined a ().
[6 marks]



Section C: more challenging.

The Fresnel integrals are defined as

C(z) = /OﬂE dy cos (y?)
S(z) = /OI dysin (y?).

C.1 Show that the intensity at position x on the screen can be written as

2m
hm2T

I(z,T)= (C2 (a) + S? (a)) .

Hint: You will need to use the fact that both C'(z) and S (z) are odd functions.

[5 marks]



Path Integral Quantum Mechanics: Solutions

Section A: mostly bookwork.

A.1 The time evolution operator U (t — to) is defined by

[ (1)) = U (t = to) ¢ (to))- (4)
Show that for probability to be conserved, U must be unitary.
[4 marks]|

Probability is the square modulus of the amplitude (the Born rule).
[1 mark]
Therefore we require

[ (8) [ (D) = 1 (to) [¢ (o))

[1 mark]
and

(W (@) [ (1)) = exp (i9) (¢ (o) |4 (o))

where ¢ is some real phase. However, we know what this phase is, since a proper normalisation of a
state is defined as

(Yly) =1

and so ¢ = 0. If the phase isn’t commented on, that’s fine!
From the stated equation,

(W ()[4 (£) = (¥ (t0) [UTU L) (to))

[1 mark].
Therefore we require

which is the definition of unitarity.
[1 mark]

A.2 A particle is initially at position x( at time to. Explain why the amplitude to find the particle at
position x at time T is given by the propagator

K (x,T;x0,t0) (5)

[6 marks]

This is a long derivation, but it’s from the notes. First project the equation given in A1l to the position
basis:

(et (T)) = (U (T — to) |4 (to))

[1 mark].
Now insert a decomposition of the identity into the position basis:



ﬁ:/dx'|x’><x'\
[1 mark]
to give
(z[ (T)) = /dx'@lU(T—to) |2} (2[4 (o))

[1 mark].
The propagator is defined to be

K (z,T;2'  to) = (z|U (T — to) |2')

and so we have

(xlp (T)) = / A’ K (2, T2 to) ('[9 ()

[1 mark]
Finally, since the particle was stated to be initially at a definite position zq, it must have been described
at the Dirac delta function at that instant:

('[Y (to)) = 0 (¢ — wo)

[1 mark]
giving

(x| (T)) = /da:'K (x,T;2" o) 6 (2" — x0)
¥ (z,T) = K (z,T; xo0,t0)
as required.
[1 mark]

Section B: bringing together ideas from across the course.

B.1 In Fig. 1 A particle starts at position x = 0 at time ¢t = 0. At time ¢’ it travels through a slit of
width 2b centred about x = 0 before reaching a screen at time 7. Explain with the aid of a diagram
why the amplitude to find the particle at position x on the screen is given by

b
P (z,T) = /4> do'K (z,T;2',t') K (¢/,1';0,0). (6)

[4 marks]

In quantum mechanics amplitudes play the role of probabilities in classical problems. In particular,

Amp (A and B) = Amp (A) Amp (B)
Amp (A or B) = Amp (A) + Amp (B).

For the particle to reach point z on the screen, it must first reach point x’ within the slit: this is a
case of ‘A and B’, with A =(particle reaches x,T) and B =(particle reaches z’,¢'). But this is true for
all allowed positions x’ within the slit, so we must sum over these possibilities. This is a case of ‘A or
B’ (or C or D...), with A, B, etc labelling all the points within the slit.

[2 marks] for any reasonable explanation



[2 marks]| for a decent picture with relevant points labelled.

B.2 The propagator in free space is given by

m 1 Tn(TffT,)Q
K (zp,tpiwit) =\ 555—F7—=¢ s
(Tf, £ ) 2ﬁhzm(Xp< 2h(1‘f—t)

Show that the amplitude to find the particle in B.1. at position x at time 7" is given by

1 om [
Y (x, T —
(2, T) = 57 OX p( 2hT> \/ hT/a< )dyexp iy?)

for a suitably defined a (z).

[6 marks]

I’ll be honest here: the algebra required for this question is much harder than anything you would
realistically be required to perform in an exam without a lot more help. I wanted to give you exam-
style questions so you have some idea what to expect, but I also wanted to cover relevant material
thoroughly. So let’s give it a go, but don’t worry if it looks like too much — it is!

b
(2, T) = / do'K (z,T;2',t') K (2/,;0,0)

12

_ / 2 exp< <<—>+>>
27rhz\/7_t/ 2h \ (T -t) t

[1 mark]

(0 (JC,T) =

27th\/7_#/ da’ exp( FT 7] ((:c—x’)2+x'2T;t/>>
:2:;” _t//dxexp< T t)(m2+x’2—2m’+x’2(§—1)>)
=g yrr= o (i (7) (- (72 + (7))

Now complete the square:

Y (z,T) = 2:;”_ \/ﬂ(;iﬂ)/_bbdx’exp (z%(;n_t,) (Z;) <<m’— (;)x)2+§v(1— ;:):ﬂ))

[2 marks]
The 22 term is not a function of 2’ so pulls out of the intergral:

m 1 ma? b ) m T/, t/ 2
e )= o T o <2hT> / o exp (%Cf—t)t (”f - <T>‘”> )

[1 mark]
Now change variables:




and define

giving
2

1 ma? o2m [ , |, m T/t
“’(%T)—zmexp(’m)\/m/_b,dy exp iy - 2h(T—t’)t’<T)x

And change variables again to remove the = term in the integrand:

oy m TN
Y=YV N\ -y \T

[1 mark]

defining
VR B

@) ==\ T =) t’(T)x

_jm T/ ([t
S\ 2r(T -tV T)"

[1 mark]

gives

1 max?\ [2m [¢ o
Y (x,T) = 5 exXp (ZQhT> ﬁ/_adyexp(zy )

[I wouldn’t be surprised if I've made some errors in my own algebra here; please let me know if you
disagree. As a basic check, ¢ does at least have the correct units.]

Section C: more challenging.

The Fresnel integrals are defined as

dy cos (UQ)

I
S (z) 2 /0 dysin (4).

C.1 Show that the intensity at position = on the screen can be written as

2m

[ T) = hr?T

(C? (a) + 5% (a)) .

Hint: You will need to use the fact that both C' () and S (z) are odd functions.

[5 marks]



0
dyexp iy? —|—/ dyeXp zy

/

a
/ dyexp zy / dyexp Zy
0 0

— C(a) +iS (a) - O (~a) - iS (~a)
=2<c<a>+zs<>>

a

/ dy exp (Zyg) =

—a

where the last line used that the functions are both odd.

[2 marks]
Therefore
o1 = Lo (i) [ (€@ +is @)
[1 mark]
I(z,T) = |¢ (2, T)|
[1 mark]
and so
I(x,T) hf;”T (C? (a) + 57 (a))
[1 mark]



2 Path Integral Quantum Mechanics

Section A: mostly bookwork.

In this question you will calculate the amplitude for a quantum particle at an initial positon x; at time
t; to move to position z; at time tf, in the special case V' = 0.

A.1 Explain the meaning of the following terms, giving mathematical expressions in each case.

(i) The time evolution operator U (t; — t;).

[3 marks]
(ii) The propagator K (xs,ts;xi, t;).
[3 marks]
A.2 For a particle in free space, V = 0, explain why
K (xy,tp;x,t;) = (xy|exp (—z’ﬁQ (tyr —t;) /Qmﬁ) | (7)
where p is the momentum operator and m is the mass of the particle.
[4 marks]

Section B: bringing together ideas from across the course.
B.1 Define the Gaussian integral

I(a)= /OO exp (—az?) dz. (8)

— 00

By considering I?, and working in plane polar co-ordinates, show that

I
I(a) =/ 9
@)=/ (9
[5 marks]
B.2 Now consider the Gaussian integral
I(a,b) = / exp (—az? + bx) dz. (10)

By completing the square, or otherwise, show that

I(ab) = \/jexp (Zi) . (11)

[3 marks]
B.3 By resolving the identity operator in the momentum basis, or otherwise, show that
52 Y ;2
exp (—ip” (ty —ti) /2m) = / dpexp (—ip® (ty —t:) /2m) |p) (p| (12)
where
plp) = plp)- (13)
[2 marks]



Section C: more challenging.

C.1 Show that the propagator in free space is given by

m 1 i(xy —z)*m
K tr; ,‘,t,’ = " .
(@s trsi t) 2mih /T — 1, eXp( 2h (t5 — t;)

Hint: you will need to use the answers to A2, B2, and B3. You may use the fact that

1 )
(zlp) = ooy P (ipx).




Answers to Question 2

Section A: mostly bookwork.

In this question you will calculate the amplitude for a quantum particle at an initial positon x; at time
t; to move to position x; at time ty, in the special case V = 0.

A.1 Explain the meaning of the following terms, giving mathematical expressions in each case.

(i) The time evolution operator U (ty —t;)

[3 marks]
The time evolution operator acting on a state | (¢;)) takes it to state |9 (¢7)).
[1 mark]
That is,
Uty —t:) [¢ (1)) = [ (£5)) (16)
[1 mark].
Explicitly, it is given by
Uty —t;) = exp (—uff (ty —t;) /h) (17)
[1 mark]. There will be 3 marks for any 3 relevant comments.
(i) The propagator K (xy,tr;x;, ;).
[3 marks]
The propagator is the amplitude to find a state |zf (tf)) given an initial state |z; (;)).
[1 mark].
That is,
K (g, tysasti) = (g (b)) [U (85 = i) |23 (8)- (18)
[2 marks].
A.2 For a particle in free space, V' = 0, explain why
K (g, tya,t) = (xyexp (—ip® (ty — t;) /2mh) |z;) (19)
where p is the momentum operator and m is the mass of the particle.
[4 marks]
In free space, the potential is zero.
[1 mark]
Therefore
H=T=p*/2m
[1 mark]
Since

10



K (g tpaiti) = (o]0 (ty — ) |2i) (20)
= (wylexp (<ifl (ty — ;) /1) |o) (21)

[2 marks]
this gives

K (zy,ty;x,t;) = (xy]exp (—iﬁ2 (tp —ti) /2mh) |;). (22)

In the part worth 2 marks I would be generous if the same expression were not noted in part (ii).
Section B: bringing together ideas from across the course.

B.1 Define the Gaussian integral

(24)

[5 marks]

I? = </O:O exp (—az?) d:c)2 (25)

</O:o exp (~aa?) dﬂf) < [ O; exp (—ay?) dy) (26)

(using a different label for the dummy integral in the second case). Therefore

I’ = /Z /Z exp (fa (x2 + yz)) dady (27)

[1 mark]
Now switch to plane polar co-ordinates. You can derive the Jacobian, or just remember it (dimensions
pretty much fix what it can be!):

2m [e'S)
I’ = / dﬂ/ dr - rexp (—ar?) (28)
0 0

[1 mark].
The 6 integral separates out:

I’ = 27r/ dr - rexp (—ar?) (29)
0

[1 mark]
and the remaining integral can be done by inspection:

11



-1 o0
I’ =2n [Za exp (—ar )]
0
[1 mark]
giving
r="
a
[1 mark]
and
JN
=\

B.2 Now consider the Gaussian integral
I(a,b) = / exp (—az® + bx) dz.

By completing the square, or otherwise, show that

[1 mark].
The final term is not a function of x, so it factors out:

oo (1) [~ o (o (e 3) Jar

Finally, use a change of variables

b
= r— —
4 2a

[1 mark].

(32)

(33)

(39)

Since this is a finite shift, neither infinite limite is affected, and the original Gaussian integral results:

I (a,b) = exp Ci) /OO exp (—ay®) dy.

—00

[1 mark]
Hence,

12

(40)



o= o (2).

B.3 By resolving the identity operator in the momentum basis, or otherwise, show that

exp (i (1 — 1) /2m) = [~ dpesp (i (1 — 1) /2m) o) (41)

where
blp) = plp)- (42)
[2 marks]

Resolving the identity operator in the momentum basis means

I= /_ ~ o)l (43)

[1 mark].
Stick it on the right, say:

exp (ig? (1 — ) /2m) [ " aplp) ol (44)

Now, the slightly strange bit is that p the operator is not a function of p the eigenstate(!). But if you
think of matrices passing through sums over their eigenstates perhaps that gives some intuition. The
result is

/ " dpexp (—i? (7 — ) /2m) [p) (o (45)
_ / " dpexp (—ig? (ty — 1) /2m) [p) (o (46)

[1 mark]
where the hat has disappeared because

plp) = plp) (47)

and the exponential of the function of p is just defined by its Taylor series.

Section C: more challenging.

C.1 Show that the propagator in free space is given by

m 1 i(xy —z)*m
K te; i7ti = " - . 48
(o, tgi i, 1) 2wzhmeXP< 2h(ty — t,) (48)

Hint: you will need to use the answers to A2, B2, and B3. You may use the fact that

1 .
(z|p) = Tor O (ipz) . (49)

13



[5 marks]

OK, so stick it all together! In A2 we have

K (g, ty 2, t) = (xy|exp (—ip® (ty — t;) /2mh) |z;).

Insert a complete set of momentum states as in B2:

K (g, tp;a,t) = / dp(x | exp (fi;ﬁz (ty —t;) /2mﬁ) |p) (p|x;).

[1 mark].

Therefore the p loses its hat, as in B3:
K (g, tp;a,t) = / dp(x | exp (fip2 (ty —t;) /2mﬁ) |p) (p|x;).

[1 mark]

Now the exponential is just a complex number, not an operator, so it pulls out to the left:
K (zy,tpaiti) = / dpexp (—ip® (ty — i) /2mh) (zs|p)(p|a:).

[1 mark]
We were reminded of the Dirac notation for a plane wave in the Hint, which tells us that

K (zg,tyiat) = 5h dpexp (—ip? (t — t;) /2mh) exp (ipx s /h) exp (—ipzi/h)
™ — 00
and so
1 o .9 )
K (xf,tya,t;) = — dpexp (—Zp (ty —t;) /2mh+ip (zy — ;) /h) )
2nh J_ o
[1 mark]

Now notice that this is just a Gaussian integral of the form in B2:

[eS) b2
[m dz exp (faxz + ba:) = \/Zexp <4a>

with

a=1i(ty —t;) /2mh
b=1i(x;—z;)/h

[1 mark]

(50)

(51)

(52)

(54)

(55)

If you’re worried about the i, that’s good! But in fact it turns out the Gaussian integral can be done
for complex exponents without any issue provided the real part is negative. A comment on this (even

to say you're unsure) would be welcome but is not necessary.
Therefore

. 2

m im (zy — x;)
K tr; i,ti = . .
(@s,tpi@isti) Qm(tfti)heXp<2(tfti)h>
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