
Advanced Quantum Physics: Problem Set 2

1 Path Integral Quantum Mechanics
Section A: mostly bookwork.

A.1 The time evolution operator Û (t− t0) is defined by

|ψ (t)⟩ = Û (t− t0) |ψ (t0)⟩. (1)

Show that for probability to be conserved, Û must be unitary.

[4 marks]

A.2 A particle is initially at position x0 at time t0. Explain why the amplitude to find the particle at
position x at time T is given by the propagator

K (x, T ;x0, t0) . (2)

[6 marks]

Section B: bringing together ideas from across the course.

B.1 A particle starts at position x = 0 at time t = 0. At time t′ it travels through a slit of width 2b
centred about x = 0 before reaching a screen at time T . Explain with the aid of a diagram why the
amplitude to find the particle at position x on the screen is given by

ψ (x, T ) =

∫ b

−b

dx′K (x, T ;x′, t′)K (x′, t′; 0, 0) . (3)

[4 marks]

B.2 The propagator in free space is given by

K (xf , tf ;xi, ti) =

√
m

2πℏi
1

√
tf − ti

exp

(
i
m (xf − xi)

2

2ℏ (tf − ti)

)
.

Show that the amplitude to find the particle in B.1 at position x at time T is given by

ψ (x, T ) =
1

2πi
exp

(
i
mx2

2ℏT

)√
2m

ℏT

∫ a(x)

−a(x)

dy exp
(
iy2
)

for a suitably defined a (x).

[6 marks]
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Section C: more challenging.

The Fresnel integrals are defined as

C (x) ≜
∫ x

0

dy cos
(
y2
)

S (x) ≜
∫ x

0

dy sin
(
y2
)
.

C.1 Show that the intensity at position x on the screen can be written as

I (x, T ) =
2m

ℏπ2T

(
C2 (a) + S2 (a)

)
.

Hint : You will need to use the fact that both C (x) and S (x) are odd functions.

[5 marks]
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Path Integral Quantum Mechanics: Solutions
Section A: mostly bookwork.

A.1 The time evolution operator Û (t− t0) is defined by

|ψ (t)⟩ = Û (t− t0) |ψ (t0)⟩. (4)

Show that for probability to be conserved, Û must be unitary.

[4 marks]

Probability is the square modulus of the amplitude (the Born rule).
[1 mark]
Therefore we require

|⟨ψ (t) |ψ (t)⟩|2 = |⟨ψ (t0) |ψ (t0)⟩|2

[1 mark]
and

⟨ψ (t) |ψ (t)⟩ = exp (iϕ) ⟨ψ (t0) |ψ (t0)⟩

where ϕ is some real phase. However, we know what this phase is, since a proper normalisation of a
state is defined as

⟨ψ|ψ⟩ = 1

and so ϕ = 0. If the phase isn’t commented on, that’s fine!
From the stated equation,

⟨ψ (t) |ψ (t)⟩ = ⟨ψ (t0) |Û†Û |ψ (t0)⟩

[1 mark].
Therefore we require

Û†Û = Î

which is the definition of unitarity.
[1 mark]

A.2 A particle is initially at position x0 at time t0. Explain why the amplitude to find the particle at
position x at time T is given by the propagator

K (x, T ;x0, t0) . (5)

[6 marks]

This is a long derivation, but it’s from the notes. First project the equation given in A1 to the position
basis:

⟨x|ψ (T )⟩ = ⟨x|Û (T − t0) |ψ (t0)⟩

[1 mark].
Now insert a decomposition of the identity into the position basis:
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Î =
∫

dx′|x′⟩⟨x′|

[1 mark]
to give

⟨x|ψ (T )⟩ =
∫

dx′⟨x|Û (T − t0) |x′⟩⟨x′|ψ (t0)⟩

[1 mark].
The propagator is defined to be

K (x, T ;x′, t0) = ⟨x|Û (T − t0) |x′⟩

and so we have

⟨x|ψ (T )⟩ =
∫

dx′K (x, T ;x′, t0) ⟨x′|ψ (t0)⟩

[1 mark]
Finally, since the particle was stated to be initially at a definite position x0, it must have been described
at the Dirac delta function at that instant:

⟨x′|ψ (t0)⟩ = δ (x′ − x0)

[1 mark]
giving

⟨x|ψ (T )⟩ =
∫

dx′K (x, T ;x′, t0) δ (x
′ − x0)

ψ (x, T ) = K (x, T ;x0, t0)

as required.
[1 mark]

Section B: bringing together ideas from across the course.

B.1 In Fig. 1 A particle starts at position x = 0 at time t = 0. At time t′ it travels through a slit of
width 2b centred about x = 0 before reaching a screen at time T . Explain with the aid of a diagram
why the amplitude to find the particle at position x on the screen is given by

ψ (x, T ) =

∫ b

−b

dx′K (x, T ;x′, t′)K (x′, t′; 0, 0) . (6)

[4 marks]

In quantum mechanics amplitudes play the role of probabilities in classical problems. In particular,

Amp (A and B) = Amp (A)Amp (B)

Amp (A or B) = Amp (A) + Amp (B) .

For the particle to reach point x on the screen, it must first reach point x′ within the slit: this is a
case of ‘A and B’, with A =(particle reaches x, T ) and B =(particle reaches x′, t′). But this is true for
all allowed positions x′ within the slit, so we must sum over these possibilities. This is a case of ‘A or
B’ (or C or D...), with A, B, etc labelling all the points within the slit.
[2 marks] for any reasonable explanation
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[2 marks] for a decent picture with relevant points labelled.

B.2 The propagator in free space is given by

K (xf , tf ;xi, ti) =

√
m

2πℏi
1

√
tf − ti

exp

(
i
m (xf − xi)

2

2ℏ (tf − ti)

)
.

Show that the amplitude to find the particle in B.1. at position x at time T is given by

ψ (x, T ) =
1

2πi
exp

(
i
mx2

2ℏT

)√
2m

ℏT

∫ a(x)

−a(x)

dy exp
(
iy2
)

for a suitably defined a (x).

[6 marks]

I’ll be honest here: the algebra required for this question is much harder than anything you would
realistically be required to perform in an exam without a lot more help. I wanted to give you exam-
style questions so you have some idea what to expect, but I also wanted to cover relevant material
thoroughly. So let’s give it a go, but don’t worry if it looks like too much – it is!

ψ (x, T ) =

∫ b

−b

dx′K (x, T ;x′, t′)K (x′, t′; 0, 0)

=
m

2πℏi
1√

t′ (T − t′)

∫ b

−b

dx′ exp

(
i
m

2ℏ

(
(x− x′)

2

(T − t′)
+
x′2

t′

))

[1 mark]

ψ (x, T ) =
m

2πℏi
1√

t′ (T − t′)

∫ b

−b

dx′ exp
(
i

m

2ℏ (T − t′)

(
(x− x′)

2
+ x′2

T − t′

t′

))
=

m

2πℏi
1√

t′ (T − t′)

∫ b

−b

dx′ exp
(
i

m

2ℏ (T − t′)

(
x2 + x′2 − 2xx′ + x′2

(
T

t′
− 1

)))
=

m

2πℏi
1√

t′ (T − t′)

∫ b

−b

dx′ exp
(
i

m

2ℏ (T − t′)

(
T

t′

)(
x′2 −

(
t′

T

)
2xx′ +

(
t′

T

)
x2
))

Now complete the square:

ψ (x, T ) =
m

2πℏi
1√

t′ (T − t′)

∫ b

−b

dx′ exp

(
i

m

2ℏ (T − t′)

(
T

t′

)((
x′ −

(
t′

T

)
x

)2

+
t′

T

(
1− t′

T

)
x2

))

[2 marks]
The x2 term is not a function of x′ so pulls out of the intergral:

ψ (x, T ) =
m

2πℏi
1√

t′ (T − t′)
exp

(
i
mx2

2ℏT

)∫ b

−b

dx′ exp

(
i

m

2ℏ (T − t′)

T

t′

(
x′ −

(
t′

T

)
x

)2
)

[1 mark]
Now change variables:

y′ =

√
m

2ℏ (T − t′)

T

t′
x′
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and define

b′ =

√
m

2ℏ (T − t′)

T

t′
b

giving

ψ (x, T ) =
1

2πi
exp

(
i
mx2

2ℏT

)√
2m

ℏT

∫ b′

−b′
dy′ exp

i(y′ −√ m

2ℏ (T − t′)

T

t′

(
t′

T

)
x

)2


And change variables again to remove the x term in the integrand:

y = y′ −

√
m

2ℏ (T − t′)

T

t′

(
t′

T

)
x

[1 mark]
defining

a (x) = b′ −

√
m

2ℏ (T − t′)

T

t′

(
t′

T

)
x

=

√
m

2ℏ (T − t′)

T

t′

(
b−

(
t′

T

)
x

)
[1 mark]
gives

ψ (x, T ) =
1

2πi
exp

(
i
mx2

2ℏT

)√
2m

ℏT

∫ a

−a

dy exp
(
iy2
)
.

[I wouldn’t be surprised if I’ve made some errors in my own algebra here; please let me know if you
disagree. As a basic check, ψ does at least have the correct units.]

Section C: more challenging.

The Fresnel integrals are defined as

C (x) ≜
∫ x

0

dy cos
(
y2
)

S (x) ≜
∫ x

0

dy sin
(
y2
)
.

C.1 Show that the intensity at position x on the screen can be written as

I (x, T ) =
2m

ℏπ2T

(
C2 (a) + S2 (a)

)
.

Hint : You will need to use the fact that both C (x) and S (x) are odd functions.

[5 marks]
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∫ a

−a

dy exp
(
iy2
)
=

∫ a

0

dy exp
(
iy2
)
+

∫ 0

−a

dy exp
(
iy2
)

=

∫ a

0

dy exp
(
iy2
)
−
∫ −a

0

dy exp
(
iy2
)

= C (a) + iS (a)− C (−a)− iS (−a)
= 2 (C (a) + iS (a))

where the last line used that the functions are both odd.
[2 marks]
Therefore

ψ (x, T ) =
1

πi
exp

(
i
mx2

2ℏT

)√
2m

ℏT
(C (a) + iS (a)) .

[1 mark]

I (x, T ) = |ψ (x, T )|2

[1 mark]
and so

I (x, T ) =
2m

ℏπ2T

(
C2 (a) + S2 (a)

)
.

[1 mark]
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2 Path Integral Quantum Mechanics
Section A: mostly bookwork.

In this question you will calculate the amplitude for a quantum particle at an initial positon xi at time
ti to move to position xf at time tf , in the special case V = 0.

A.1 Explain the meaning of the following terms, giving mathematical expressions in each case.

(i) The time evolution operator Û (tf − ti).

[3 marks]

(ii) The propagator K (xf , tf ;xi, ti).

[3 marks]

A.2 For a particle in free space, V = 0, explain why

K (xf , tf ;xi, ti) = ⟨xf | exp
(
−ip̂2 (tf − ti) /2mℏ

)
|xi⟩ (7)

where p̂ is the momentum operator and m is the mass of the particle.

[4 marks]

Section B: bringing together ideas from across the course.

B.1 Define the Gaussian integral

I (a) =

∫ ∞

−∞
exp

(
−ax2

)
dx. (8)

By considering I2, and working in plane polar co-ordinates, show that

I (a) =

√
π

a
. (9)

[5 marks]

B.2 Now consider the Gaussian integral

I (a, b) =

∫ ∞

−∞
exp

(
−ax2 + bx

)
dx. (10)

By completing the square, or otherwise, show that

I (a, b) =

√
π

a
exp

(
b2

4a

)
. (11)

[3 marks]

B.3 By resolving the identity operator in the momentum basis, or otherwise, show that

exp
(
−ip̂2 (tf − ti) /2m

)
=

∫ ∞

−∞
dp exp

(
−ip2 (tf − ti) /2m

)
|p⟩⟨p| (12)

where

p̂|p⟩ = p|p⟩. (13)

[2 marks]
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Section C: more challenging.

C.1 Show that the propagator in free space is given by

K (xf , tf ;xi, ti) =

√
m

2πiℏ
1

√
tf − ti

exp

(
i (xf − xi)

2
m

2ℏ (tf − ti)

)
. (14)

Hint : you will need to use the answers to A2, B2, and B3. You may use the fact that

⟨x|p⟩ = 1√
2πℏ

exp (ipx) . (15)

[5 marks]
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Answers to Question 2
Section A: mostly bookwork.

In this question you will calculate the amplitude for a quantum particle at an initial positon xi at time
ti to move to position xf at time tf , in the special case V = 0.

A.1 Explain the meaning of the following terms, giving mathematical expressions in each case.

(i) The time evolution operator Û (tf − ti)

[3 marks]

The time evolution operator acting on a state |ψ (ti)⟩ takes it to state |ψ (tf )⟩.
[1 mark]
That is,

Û (tf − ti) |ψ (ti)⟩ = |ψ (tf )⟩ (16)

[1 mark].
Explicitly, it is given by

Û (tf − ti) = exp
(
−iĤ (tf − ti) /ℏ

)
(17)

[1 mark]. There will be 3 marks for any 3 relevant comments.

(ii) The propagator K (xf , tf ;xi, ti).

[3 marks]

The propagator is the amplitude to find a state |xf (tf )⟩ given an initial state |xi (ti)⟩.
[1 mark].
That is,

K (xf , tf ;xi, ti) = ⟨xf (tf ) |Û (tf − ti) |xi (ti)⟩. (18)

[2 marks].

A.2 For a particle in free space, V = 0, explain why

K (xf , tf ;xi, ti) = ⟨xf | exp
(
−ip̂2 (tf − ti) /2mℏ

)
|xi⟩ (19)

where p̂ is the momentum operator and m is the mass of the particle.

[4 marks]

In free space, the potential is zero.
[1 mark]
Therefore

Ĥ = T̂ = p̂2/2m

[1 mark]
Since
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K (xf , tf ;xi, ti) = ⟨xf |Û (tf − ti) |xi⟩ (20)

= ⟨xf | exp
(
−iĤ (tf − ti) /ℏ

)
|xi⟩ (21)

[2 marks]
this gives

K (xf , tf ;xi, ti) = ⟨xf | exp
(
−ip̂2 (tf − ti) /2mℏ

)
|xi⟩. (22)

In the part worth 2 marks I would be generous if the same expression were not noted in part (ii).

Section B: bringing together ideas from across the course.

B.1 Define the Gaussian integral

I (a) =

∫ ∞

−∞
exp

(
−ax2

)
dx. (23)

By considering I2, and working in plane polar co-ordinates, show that

I (a) =

√
π

a
. (24)

[5 marks]

I2 =

(∫ ∞

−∞
exp

(
−ax2

)
dx
)2

(25)

=

(∫ ∞

−∞
exp

(
−ax2

)
dx
)(∫ ∞

−∞
exp

(
−ay2

)
dy
)

(26)

(using a different label for the dummy integral in the second case). Therefore

I2 =

∫ ∞

−∞

∫ ∞

−∞
exp

(
−a
(
x2 + y2

))
dxdy (27)

[1 mark]
Now switch to plane polar co-ordinates. You can derive the Jacobian, or just remember it (dimensions
pretty much fix what it can be!):

I2 =

∫ 2π

0

dθ
∫ ∞

0

dr · r exp
(
−ar2

)
(28)

[1 mark].
The θ integral separates out:

I2 = 2π

∫ ∞

0

dr · r exp
(
−ar2

)
(29)

[1 mark]
and the remaining integral can be done by inspection:
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I2 = 2π

[
−1

2a
exp

(
−ar2

)]∞
0

(30)

[1 mark]
giving

I2 =
π

a
(31)

[1 mark]
and

I =

√
π

a
. (32)

B.2 Now consider the Gaussian integral

I (a, b) =

∫ ∞

−∞
exp

(
−ax2 + bx

)
dx. (33)

By completing the square, or otherwise, show that

I (a, b) =

√
π

a
exp

(
b2

4a

)
. (34)

[3 marks]

I (a, b) =

∫ ∞

−∞
exp

(
−ax2 + bx

)
dx (35)

=

∫ ∞

−∞
exp

(
−a
(
x2 − bx

a

))
dx (36)

=

∫ ∞

−∞
exp

(
−a
(
x− b

2a

)2

+ a

(
b

2a

)2
)

dx (37)

[1 mark].
The final term is not a function of x, so it factors out:

I (a, b) = exp

(
b2

4a

)∫ ∞

−∞
exp

(
−a
(
x− b

2a

)2
)

dx. (38)

Finally, use a change of variables

y = x− b

2a
(39)

[1 mark].
Since this is a finite shift, neither infinite limite is affected, and the original Gaussian integral results:

I (a, b) = exp

(
b2

4a

)∫ ∞

−∞
exp

(
−ay2

)
dy. (40)

[1 mark]
Hence,
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I (a, b) =

√
π

a
exp

(
b2

4a

)
.

B.3 By resolving the identity operator in the momentum basis, or otherwise, show that

exp
(
−ip̂2 (tf − ti) /2m

)
=

∫ ∞

−∞
dp exp

(
−ip2 (tf − ti) /2m

)
|p⟩⟨p| (41)

where

p̂|p⟩ = p|p⟩. (42)

[2 marks]

Resolving the identity operator in the momentum basis means

Î =
∫ ∞

−∞
dp|p⟩⟨p| (43)

[1 mark].
Stick it on the right, say:

exp
(
−ip̂2 (tf − ti) /2m

) ∫ ∞

−∞
dp|p⟩⟨p|. (44)

Now, the slightly strange bit is that p̂ the operator is not a function of p the eigenstate(!). But if you
think of matrices passing through sums over their eigenstates perhaps that gives some intuition. The
result is

∫ ∞

−∞
dp exp

(
−ip̂2 (tf − ti) /2m

)
|p⟩⟨p| (45)

=

∫ ∞

−∞
dp exp

(
−ip2 (tf − ti) /2m

)
|p⟩⟨p| (46)

[1 mark]
where the hat has disappeared because

p̂|p⟩ = p|p⟩ (47)

and the exponential of the function of p̂ is just defined by its Taylor series.

Section C: more challenging.

C.1 Show that the propagator in free space is given by

K (xf , tf ;xi, ti) =

√
m

2πiℏ
1

√
tf − ti

exp

(
i (xf − xi)

2
m

2ℏ (tf − ti)

)
. (48)

Hint : you will need to use the answers to A2, B2, and B3. You may use the fact that

⟨x|p⟩ = 1√
2πℏ

exp (ipx) . (49)
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[5 marks]

OK, so stick it all together! In A2 we have

K (xf , tf ;xi, ti) = ⟨xf | exp
(
−ip̂2 (tf − ti) /2mℏ

)
|xi⟩. (50)

Insert a complete set of momentum states as in B2:

K (xf , tf ;xi, ti) =

∫ ∞

−∞
dp⟨xf | exp

(
−ip̂2 (tf − ti) /2mℏ

)
|p⟩⟨p|xi⟩. (51)

[1 mark].
Therefore the p̂ loses its hat, as in B3:

K (xf , tf ;xi, ti) =

∫ ∞

−∞
dp⟨xf | exp

(
−ip2 (tf − ti) /2mℏ

)
|p⟩⟨p|xi⟩. (52)

[1 mark]
Now the exponential is just a complex number, not an operator, so it pulls out to the left:

K (xf , tf ;xi, ti) =

∫ ∞

−∞
dp exp

(
−ip2 (tf − ti) /2mℏ

)
⟨xf |p⟩⟨p|xi⟩. (53)

[1 mark]
We were reminded of the Dirac notation for a plane wave in the Hint, which tells us that

K (xf , tf ;xi, ti) =
1

2πℏ

∫ ∞

−∞
dp exp

(
−ip2 (tf − ti) /2mℏ

)
exp (ipxf/ℏ) exp (−ipxi/ℏ) (54)

and so

K (xf , tf ;xi, ti) =
1

2πℏ

∫ ∞

−∞
dp exp

(
−ip2 (tf − ti) /2mℏ+ ip (xf − xi) /ℏ

)
. (55)

[1 mark]
Now notice that this is just a Gaussian integral of the form in B2:∫ ∞

−∞
dx exp

(
−ax2 + bx

)
=

√
π

a
exp

(
b2

4a

)
(56)

with

a = i (tf − ti) /2mℏ
b = i (xf − xi) /ℏ.

[1 mark]
If you’re worried about the i, that’s good! But in fact it turns out the Gaussian integral can be done
for complex exponents without any issue provided the real part is negative. A comment on this (even
to say you’re unsure) would be welcome but is not necessary.
Therefore

K (xf , tf ;xi, ti) =

√
m

2πi (tf − ti) ℏ
exp

(
im (xf − xi)

2

2 (tf − ti) ℏ

)
. (57)

14


