
Advanced Quantum Physics: Problem Set 1

1 Lagrangian Mechanics
Section A: mostly bookwork.

Using generalised co-ordinates qi (t) and velocities q̇i (t) at time t the Lagrangian for a particle moving
in a potential V (q) is

L (qi, q̇i) =
1

2
mq̇2 − V (q) . (1)

A.1 Write down the corresponding action governing the motion between times t0 and t1.

[2 marks]

A.2 Call the true trajectory of the particle qi (t). By considering variations away from this trajectory of
the form qi (t)+λϵi (t), formulate a mathematical statement of the principle of least action, explaining
your reasoning.

[3 marks]

A.3 Using the principle of least action, derive the Euler Lagrange equations describing the motion of
the particle.

[5 marks]

Section B: bringing together ideas from across the course.

Now consider a simple example of functional calculus in a different context.

The distance between two points is given by the functional

l [x] =

∫ x1

x0

√
1 +

(
dy
dx

)2

dx (2)

where

x =

(
x
y

)
. (3)

B.1 Explain the origin of Eq. 2.

[3 marks]

B.2 By considering paths x + λϵ, find a differential equation describing the path minimising the
distance between x1 and x2. Explain all the steps in your working.

[4 marks]

B.3 Solve your equation to find the shortest distance between the two points. Does this match your
intuition?
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[3 marks]

Section C: more challenging.

C.1 The squared proper distance between two spacetime events in Minkowski space is

ds2 = dx2 − c2dt2. (4)

Find the path t (x) that minimises the proper distance between two spacetime events.
[Hint: you may use your answers to Section B.]

[3 marks]

C.2 What is the proper distance along this path?

[2 marks]
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Solutions to Question 1
Section A: mostly bookwork.

Using generalised co-ordinates qi (t) and velocities q̇i (t) at time t the Lagrangian for a particle moving
in a potential V (q) is

L (qi, q̇i, t) =
1

2
mq̇2 − V (q) . (5)

A.1 Write down the corresponding action governing the motion between times t0 and t1.

[2 marks]

S [qi] =

∫ t1

t0

Ldt

A.2 Call the true trajectory of the particle qi (t). By considering variations away from this trajectory of
the form qi (t)+λϵi (t), formulate a mathematical statement of the principle of least action, explaining
your reasoning.

[3 marks]

The principle of least action states that the classical trajectory of the particle extremises the action.
[1 mark]
Mathematically: (

∂S [qi + λϵi]

∂λ

)
qi,ϵi

∣∣∣∣∣
λ=0

= 0

[1 mark].
The reason is that the principle states that the classical path extremises the action in the space of all
trajectories, and an extremum by definition has a vanishing first derivative.
[1 mark]
N.B. the name is a bit of a misnomer based on the fact that ‘extremises’ often means ‘minimises’ in
practice. Actually even ‘extremise’ is not fully correct either: the path followed is one along which the
action is constant, so the variation is zero. We return to this later in the course.

A.3 Using the principle of least action, derive the Euler Lagrange equations describing the motion of
the particle.

[5 marks]

S [qi] =

∫ t1

t0

L (qi, q̇i, t) dt

so

S [qi + λϵi] =

∫ t1

t0

L (qi + λϵi, q̇i + λϵ̇i, t) dt

[1 mark].

∂S [qi + λϵi]

∂λ
=

∫ t1

t0

{
∂L

∂qi

∂ (qi + λϵi)

∂λ
+
∂L

∂q̇i

∂ (q̇i + λϵ̇i)

∂λ
+
∂L

∂t

∂t

∂λ

}
dt

=

∫ t1

t0

{
∂L

∂qi
ϵi +

∂L

∂q̇i
ϵ̇i

}
dt
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[1 mark].
Therefore

∂S [qi + λϵi]

∂λ

∣∣∣∣
λ=0

= 0 =

∫ t1

t0

{
∂L

∂qi
ϵi +

∂L

∂q̇i
ϵ̇i

}
dt.

[1 mark].
Integrate the second term by parts:

0 =

∫ t1

t0

∂L

∂qi
ϵidt−

∫ t1

t0

d
dt

(
∂L

∂q̇i

)
ϵidt+

[
∂L

∂q̇i
ϵi

]t1
t0

but the boundary term is zero, by assumption: ϵi (t0) = ϵi (t1) = 0.
[1 mark]
Therefore

0 =

∫ t1

t0

{
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)}
ϵidt.

This is true for all ϵi (t). The only way that can be true is if the other part of the thing inside the
integral is zero. Therefore

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0.

[1 mark]

Section B: bringing together ideas from across the course.

Now consider a simple example of functional calculus in a different context.

The distance between two points is given by the functional

l [x] =

∫ x1

x0

√
1 +

(
dy
dx

)2

dx (6)

where

x =

(
x
y

)
. (7)

B.2 Explain the origin of Eq. 6.

[3 marks]

The distance between two points is a functional of the path taken. Specifically, it is the integral of the
line elements along the path:

l [x] =

∫
dl

[1 mark].
Decomposing into cartesian co-ordinates, using Pythagoras’ theorem we have

dl2 = dx2 + dy2

or

dl =
√

dx2 + dy2
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(+ve since lengths are +ve). Therefore

l [x] =

∫ √
dx2 + dy2

[1 mark]
or, pulling the dx out,

l [x] =

∫ x1

x0

√
1 +

(
dy
dx

)2

dx

[1 mark].

B.2 By considering paths x+λϵ, find a differential equation describing the path minimising the distance
between x1 and x2. Explain all the steps in your working.

[4 marks]

Hopefully the first part has made it clear that we seek something like the Euler Lagrange equation.

l [x+ λϵ] =

∫ x1

x0

√
1 +

(
d (y + λϵy)

dx

)2

dx

=

∫ x1

x0

√
1 +

(
dy
dx

+ λ
dϵy
dx

)2

dx

where ϵy is the y-component of the 2-component vector ϵ.
[1 mark]

∂l [x+ λϵ]

∂λ
=

∫ x1

x0


(
1 +

(
dy
dx

+ λ
dϵy
dx

)2
)−1/2(

dy
dx

+ λ
dϵy
dx

)
dϵy
dx

d

x

[1 mark]
and

∂l [x+ λϵ]

∂λ

∣∣∣∣
λ=0

=

∫ x1

x0


(
1 +

(
dy
dx

)2
)−1/2(

dy
dx

)
dϵy
dx

 dx = 0

[1 mark].
Integrating by parts,

0 = −
∫ x1

x0

d
dx


(
1 +

(
dy
dx

)2
)−1/2(

dy
dx

) ϵydx+

(1 + (dy
dx

)2
)−1/2(

dy
dx

)
ϵy

x1

x0

and the boundary term vanishes, as always, since we assume the variation vanishes at the end points.
Therefore

0 =

∫ x1

x0

d
dx


(
1 +

(
dy
dx

)2
)−1/2(

dy
dx

) ϵydx

and since this is true for all ϵy we have
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d
dx


(
1 +

(
dy
dx

)2
)−1/2(

dy
dx

) = 0

[1 mark].

B.3 Solve your equation to find the shortest distance between the two points. Does this match your
intuition?

[3 marks]

d
dx


(
1 +

(
dy
dx

)2
)−1/2(

dy
dx

) = 0

so (
1 +

(
dy
dx

)2
)−1/2(

dy
dx

)
= C

with C constant.
[1 mark]
Therefore

(
dy
dx

)2

= C2

(
1 +

(
dy
dx

)2
)

dy
dx

=
±C√
1− C2

y = C1x+ C2

with Ci constant.
[1 mark]
This is intuitive, as the shortest distance between two points is a straight line (in Euclidean space).
[1 mark]
NB for 1 mark not all that detail is needed in the first bit; any sensible statement that the solution is
linear is fine.

Section C: more challenging.

C.1 The squared proper distance between two spacetime events in Minkowski space is

ds2 = dx2 − c2dt2. (8)

Find the path t (x) that minimises the proper distance between two spacetime events.
[Hint: you may use your answers to Section B.]

[3 marks]

The hint, combined with our correct understanding in B.2, leads us to see that

l [xµ] =

∫ x1

x0

√
1− c2

(
dt
dx

)2

dx.
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[1 mark].
This is exactly the same form as before, with

y → ict.

[1 mark]
Therefore from B.3 we have

d
dx


(
1− c

(
dt
dx

)2
)−1/2(

dt
dx

) = 0

[1 mark]

C.2 What is the proper distance along this path?

[2 marks]

The solution to the equation is actually just as before: a straight line. Nothing has changed in the
reasoning. And of course we know that the shortest proper distance between two points is obtained
(only) by light:

x = ct

[1 mark].
We can therefore substitute into the ‘action’ to find

l [xµ] =

∫ x1

x0

√
1− c2

(
1

c

)2

dx = 0.

[1 mark].
It’s perhaps slightly counterintuitive, but that’s the Minkowski metric for you!
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2 Lagrangian Mechanics
Section A: mostly bookwork

Consider the action

S [qi] =

∫ tf

ti

L (qi, q̇i) dt (9)

where the Lagrangian L depends on time only implicitly via the generalised co-ordinates q (t) and
velocities q̇ (t).

A.1 Consider a general variation of the action, δS. Using Eq. 9, and the chain rule, write an expression
for δS. Make it clear what is held constant in each partial derivative.

[4 marks]

A.2 Hence, or otherwise, find an expression for the functional derivative

δS [q]

δqi (t′)
.

Hint: You may use the fact that

δqj (t)

δqi (t′)
= δijδ (t− t′) (10)

where δij is the Kronecker δ, and δ (t− t′) is a Dirac δ function.

[4 marks]

A.3 Hence explain the origin of the Euler Lagrange equations

∂L

∂qi
− d

dt
∂L

∂q̇i
= 0. (11)

[2 marks]

Section B: bringing together ideas from across the course

In relativistic problems space and time must be treated on equal footing. The action can be written
in terms of a Lagrangian density L :

S [φ] =

∫
dtL =

∫
dt
∫

d3xL (φ, ∂µφ) . (12)

Here φ (xµ) is a function of the spacetime co-ordinates

xµ =

(
ct
x

)µ

(13)

and

∂µ =
∂

∂xµ
=

(
1
c

∂
∂t
∂
∂x

)µ

. (14)

B.1 By considering the two variables of which the Lagrangian density is an explicit function, write an
expression for the variation of the action δS.

[4 marks]
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B.2 By setting

δS [φ]

δφ (xν)
= 0 (15)

derive the relativistic Euler Lagrange equations.
Hint: you may use the fact that

δφ (xµ)

δφ (xν)
= δ (xµ − xν) . (16)

[4 marks]

B.3 Consider the action

S [φ] =

∫
dt
∫

d3x

{
1

2
∂µφ∂

µφ− m2c2

2ℏ2
φ2

}
(17)

where a sum over repeated indices µ is assumed. Show that the Euler Lagrange equation for this action
is the Klein Gordon equation (

1

c2
∂2

∂t2
−∇2 +

m2c2

ℏ2

)
φ = 0. (18)

Hint: you may use the fact that

∂µ∂
µ =

1

c2
∂2

∂t2
−∇2. (19)

[2 marks]

Section C: more challenging

C.1 By writing the function φ as

φ (ct,x) = ϕ (ct,x) exp
(
−imc2t/ℏ

)
(20)

where mc2 is the rest mass of the particle, show that the Klein Gordon equation reduces to the
Schroedinger equation in the non-relativistic limit. State any assumptions that you make.

[5 marks]
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Answers to Q2
Section A: mostly bookwork

Consider the action

S [qi] =

∫ tf

ti

L (qi, q̇i) dt (21)

where the Lagrangian L depends on time only implicitly via the generalised co-ordinates q (t) and
velocities q̇ (t).

A.1 Consider a general variation of the action, δS. Using Eq. 21, and the chain rule, write an expression
for δS. Make it clear what is held constant in each partial derivative.

[4 marks]

δS =

∫ tf

ti

δL (qi, q̇i, t)dt

=

∫ tf

ti

{(
∂L

∂qi

)
q̇,t

δqi +

(
∂L

∂q̇i

)
q,t

δq̇i

}
dt

[1 mark] each for the two terms
[1 mark] each for the two pairs held constant. Note: holding t constant is unnecessary as there is no
explicit time dependence, so the mark is received whether it is there or not.

A.2 Hence, or otherwise, find an expression for the functional derivative

δS [q]

δqi (t′)
.

Hint: You may use the fact that

δqj (t)

δqi (t′)
= δijδ (t− t′) (22)

where δij is the Kronecker δ, and δ (t− t′) is a Dirac δ function.

[4 marks]

δS =

∫ tf

ti

{(
∂L

∂qi

)
q̇,t

δqi +

(
∂L

∂q̇i

)
q,t

δq̇i

}
dt

δS

δqi (t′)
=

∫ tf

ti

{(
∂L

∂qi

)
q̇,t

δqi (t)

δqi (t′)
+

(
∂L

∂q̇

)
q,t

δq̇ (t)

δqi (t′)

}
dt

[1 mark]
2nd term by parts:

δS

δqj (t′)
=

∫ tf

ti

{(
∂L

∂qi

)
q̇,t

δqi (t)

δqj (t′)
− d

dt

(
∂L

∂q̇i

)
q,t

δqi (t)

δqj (t′)

}
dt+

[(
∂L

∂q̇i

)
q,t

δqi (t)

δqj (t′)

]tf
ti
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[1 mark]
and the boundary term is assumed zero because of the boundary conditions.
Then we use the stated expression:

δS

δqj (t′)
=

∫ tf

ti

{(
∂L

∂qi

)
q̇,t

− d
dt

(
∂L

∂q̇i

)
q,t

}
δji δ(t− t′)dt

[1 mark]
Giving the result

δS

δqj (t′)
=

(
∂L

∂qj

)
q̇

− d
dt′

(
∂L

∂q̇j

)
q

[1 mark]

A.3 Hence explain the origin of the Euler Lagrange equations

∂L

∂qi
− d

dt
∂L

∂q̇i
= 0. (23)

[2 marks]

The principle of least action says that classical paths extremise the action.
[1 mark]
Hence the l.h.s. is 0, and the equations follow.
[1 mark]

Section B: bringing together ideas from across the course

In relativistic problems space and time must be treated on equal footing. The action can be written
in terms of a Lagrangian density L :

S [φ] =

∫
dtL =

∫
dt
∫

d3xL (φ, ∂µφ) . (24)

Here φ (xµ) is a function of the spacetime co-ordinates

xµ =

(
ct
x

)µ

(25)

and

∂µ =
∂

∂xµ
=

(
1
c

∂
∂t
∂
∂x

)µ

. (26)

B.1 By considering the two variables of which the Lagrangian density is an explicit function, write
an expression for the variation of the action δS. Make it clear what is held constant in each partial
derivative.

[4 marks]
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δS =

∫
dt
∫

d3xδL (φ, ∂µφ)

=

∫
dt
∫

d3x

{(
∂L
∂φ

)
∂µφ

δφ+

(
∂L
∂∂µφ

)
φ

δ∂µφ

}
.

As before, [1 mark] for each term and [1 mark] for each correct statement as to what is held constant.

B.2 By setting

δS [φ]

δφ (xν)
= 0 (27)

derive the relativistic Euler Lagrange eqautions.
Hint: you may use the fact that

δφ (xµ)

δφ (xν)
= δ (xµ − xν) . (28)

[4 marks]

δS

δφ (xν)
=

∫
dt
∫

d3x

{(
∂L
∂φ

)
∂µφ

δφ (xµ)

δφ (xν)
+

(
∂L
∂∂µφ

)
φ

δ∂µφ (xµ)

δφ (xν)

}
[1 mark]

0 =

∫
dt
∫

d3x

{(
∂L
∂φ

)
∂µφ

δφ (xµ)

δφ (xν)
+

(
∂L
∂∂µφ

)
φ

δ∂µφ (xµ)

δφ (xν)

}
[1 mark]. Integrate the second term by parts:

0 =

∫
dt
∫

d3x

{(
∂L
∂φ

)
∂µφ

δφ (xµ)

δφ (xν)
− ∂µ

(
∂L
∂∂µφ

)
φ

δφ (xµ)

δφ (xν)

}
+

[(
∂L

∂∂µφ

)
φ

δφ (xµ)

δφ (xν)

]xµ
f

xµ
i

(29)

and the boundary term disappears by assumption.
[1 mark]
Use the stated relation to find

0 =

∫
dt
∫

d3x

{(
∂L
∂φ

)
∂µφ

− ∂µ

(
∂L
∂∂µφ

)
φ

}
δ (xµ − xν)

0 =

(
∂L
∂φ

)
∂µφ

− ∂ν

(
∂L
∂∂νφ

)
φ

[1 mark].

B.3 Consider the action

S [φ] =

∫
dt
∫

d3x

{
1

2
∂µφ∂

µφ− m2c2

2ℏ2
φ2

}
(30)
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where a sum over repeated indiced µ is assumed. Show that the Euler Lagrange equation for this
action is the Klein Gordon equation(

1

c2
∂2

∂t2
−∇2 +

m2c2

ℏ2

)
φ = 0. (31)

Hint: you may use the fact that

∂µ∂
µ =

1

c2
∂2

∂t2
−∇2. (32)

[2 marks]

0 =

(
∂L
∂φ

)
∂µφ

− ∂ν

(
∂L
∂∂νφ

)
φ

0 = −m
2c2

ℏ2
φ− ∂ν∂

νφ

[1 mark] and so

(
∂ν∂

ν +
m2c2

ℏ2

)
φ = 0(

1

c2
∂2

∂t2
−∇2 +

m2c2

ℏ2

)
φ = 0

[1 mark].

Section C: more challenging

C.1 By writing the function φ as

φ (ct,x) = ϕ (ct,x) exp
(
−imc2t/ℏ

)
(33)

where mc2 is the rest mass of the particle, show that the Klein Gordon equation reduces to the
Schroedinger equation in the non-relativistic limit. State any assumptions that you make.

[5 marks]

(
1

c2
∂2

∂t2
−∇2 +

m2c2

ℏ2

)
φ = 0 (34)(

1

c2
∂2

∂t2
−∇2 +

m2c2

ℏ2

)
ϕ exp

(
−imc2t/ℏ

)
= 0 (35)

[1 mark]. Focus on the time derivative:
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∂2

∂t2
(
ϕ exp

(
−imc2t/ℏ

))
=

∂

∂t

(
ϕ̇ exp

(
−imc2t/ℏ

)
− imc2

ℏ
ϕ exp

(
−imc2t/ℏ

))
(36)

=

{
ϕ̈− 2

imc2

ℏ
ϕ̇+

(
imc2

ℏ

)2

ϕ

}
exp

(
−imc2t/ℏ

)
. (37)

[1 mark]
In the non-relativistic limit, mc2 is the dominant term, so drop the ϕ̈ term.
[1 mark]
This gives (

−2
im

ℏ
∂

∂t
− m2c2

ℏ2
−∇2 +

m2c2

ℏ2

)
ϕ exp

(
−imc2t/ℏ

)
= 0

[1 mark]. Rewriting,

iℏ
∂

∂t
φ = − ℏ2

2m
∇2φ

as required
[1 mark].
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3 Lagrangian Mechanics (assorted questions not in exam style)

3.1 Connecting classical to quantum mechanics
The Hamiltonian in classical mechanics can be found from the Lagrangian using a Legendre transform:

H = piq̇
i − L (38)

where

pi ≜
∂L

∂q̇i
. (39)

Hamilton’s equations of motion are then

q̇ =
∂H

∂p
; ṗ = −∂H

∂q
. (40)

Finally, the Poisson bracket is defined as

{f, g} ≜
∂f

∂qi

∂g

∂pi
− ∂f

∂pi
∂g

∂qi
. (41)

3.11 What is held constant in each of the seven partial derivatives?

[7 marks]

3.12 Prove the relations given in the lectures:

q̇i = {qi, H} (42)
ṗi = {pi, H} . (43)

[4 marks]

3.13 Assume we have a function with the dependence f (qi, pi, t). Derive Hamilton’s equation of
motion:

df
dt

= {f,H}+
(
∂f

∂t

)
qi,pi

. (44)

[4 marks]

3.14 Explain the difference between the Heisenberg and Schroedinger pictures of quantum mechanics.
You may need to remind yourself of the third year quantum course.

[4 marks]

3.15 Using the labels H and S to label the two pictures, we have the following relationship between
operators:

ÂH (t) = e−iĤt/ℏÂS (t) eiĤt/ℏ (45)

where the operator in the Schroedinger picture has an explicit time dependence (which is rarely a
case we consider). Assuming the Hamiltonian is time independent, derive the Heisenberg equation of
motion:

dÂH

dt
=

1

iℏ

[
ÂH , Ĥ

]
+

(
∂ÂS

∂t

)
H

explaining the meaning of the final term.
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[4 marks]

3.17 Using the Heisenberg equation of motion, prove Ehrenfest’s theorem:

d
〈
Â
〉

dt
=

1

iℏ

〈[
Â, Ĥ

]〉
+

〈
∂Â

∂t

〉
(46)

where 〈
Â
〉
≜ ⟨ψ|Â|ψ⟩ (47)

for an arbitrary state |ψ⟩.

[2 marks]

3.18 Why were we able to drop the H subscript in 3.17?

[1 mark]

3.19 Find a friend and discuss the relationship between classical constants of motion, and good quan-
tum numbers.
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